• Title/Summary/Keyword: exciton

Search Result 343, Processing Time 0.036 seconds

Optical Properties of an Exciton in Quantum Well Structures

  • Lee, Jong-Chul
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.385-390
    • /
    • 1998
  • In this paper, the oscillator strengths of both the heavy-hole and the light-hole excitons in GaAs-A\ulcornerGa\ulcornerAs and In\ulcornerGa\ulcornerAs-InP quantum wells with the effect of a magnetic field applied along the growth axis are studied. The calculation is carried out usig a variational approach, based on a simple trial exction wave function. The exciton oscillator strengths are found to decrease with increasing well width and to increase with the applied magnetic fields which lead to additional quantum confinement for moderately wide well sizes. Also, the oscillator strengths for the heavy-hole exciton are found to be large than those of the light-hole exciton in these quantum well structures.

  • PDF

The Effect of Silver Nano-Particles on Surface Plasmon-enhanced OLEDs

  • Yeo, Ye-Won;Yang, Ki-Youl;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1220-1223
    • /
    • 2009
  • The effect of silver (Ag) nano-particles on OLEDs was investigated by using a finite difference time domain (FDTD) tool. The proposed OLEDs employed Ag nanoparticles thermally deposited in a high vacuum on a cathode. The emission rate of the exciton was improved by 1.8 fold compared to the conventional OLEDs without Ag nano-particles. Less spacing between the dipole source and the Ag nano-particles resulted in a larger emission rate of the exciton in the OLED with nano-particles. The size of the Ag nano-particles was proportional to the emission rate of the exciton in a range of nano-meter scale of nano-particles. The enhancement of the emission rate of the exciton due to Ag nano-particles caused the improvement in the efficiency of the proposed OLED.

  • PDF

Effects of Triplet Excitons on Photocurrent of Polymer Photovoltaic Devices

  • Lee, Chang-Lyoul;Byeon, Clare. C.;Suh, Duk-Il;Kim, Bok-Hyeon;Yang, Xudong;Greenham, Neil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1133-1135
    • /
    • 2009
  • The rolls of triplet excitons in a polymer based photovoltaic (PV) device are investigated for improving the efficiency of PV devices. Generally, the thick photo-absorbing layer can improve the PV device efficiency by increasing the photon absorption. However, in case of PV devices with singlet excitons, the efficiency is limited by the short exciton diffusion length, which depends on the mobility and lifetimes of excitons. Therefore, using the triplet excitons, which have a higher mobility and longer lifetime, can solve the problem of premature exciton dissociation caused by the shorter singlet exciton diffusion length in the thick photo-absorbing layer. In this study, the triplet exciton dynamics of a conjugated polymer in a phosphorescent dye blended polymer PV device is investigated by photo-induced absorption, and PV devices performance at various concentrations of phosphorescent dye are is also evaluated.

  • PDF

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila;Pang, Ai Lin Christina;Sarkar, Soumya;Ooi, Zi En;Goh, Kuan Eng Johnson
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.766-773
    • /
    • 2018
  • In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.

Two-dimensional Nature of Center-of-mass Excitons Confined in a Single CdMnTe/CdTe/CdMnTe Heterostructure

  • Lee, Woojin;Kim, Minwoo;Yang, Hanyi;Kyhm, Kwangseuk;Murayama, Akihiro;Kheng, Kuntheak;Mariette, Henri;Dang, Le Si
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.589-594
    • /
    • 2018
  • We have investigated the dimensional nature of center-of-mass exciton confinement states in a CdMnTe/CdTe/CdMnTe heterostructure, where the CdTe well is too wide (144 nm) to confine both electrons and holes but able to confine whole excitons in the center-of-mass coordinate. Fine multiple photoluminescence spectra with a few meV separation were observed at 6 K. From the thickness dependence of the transition rate, they were attributed to even numbered center-of-mass exciton confinement states (N = 2, 4, 6, ${\cdots}$, 18). Dimensionality of the center-of-mass exciton confinement states was also investigated in terms of temperature dependence of radiative decay time. At low temperatures (${\leq}12K$), we found that the ground state excitons are likely localized possibly due to the barrier interface fluctuation, resulting in a constant decay time (~350 ps). With increased temperature (${\geq}12K$), localized excitons are thermally released, giving rise to a linear temperature dependence of radiative decay time as an evidence of two-dimensional nature.

Multistep Quantum Master Equation Theory for Response Functions in Four Wave Mixing Electronic Spectroscopy of Multichromophoric Macromolecules

  • Jang, Seog-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.997-1008
    • /
    • 2012
  • This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit time dependences are derived. These expressions can provide more solid physical basis for understanding 2-dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum master equation (QME) approach is employed for the derivation of multistep time evolution equations for Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian effects in a consistent manner.

Finite Element Method (FEM) Study on Space Charge Effects in Organic Light Emitting Diodes (OLED)

  • Kim, Kwang-Sik;Hwang, Young-Wook;Won, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.467-472
    • /
    • 2012
  • In this paper, we present a finite element method (FEM) study on the space charge effects in organic light emitting diodes. The physical model covers all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillation which thus is embodied as exciton in a stack of multilayer. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution. We also report our investigation on the influence of the insertion of the emission layer (EML) in the bilayer structure.

Optical Transitions of a InGaP-AlInGaP Semiconductor Single Quantum Well in Magnetic Fields

  • Kim, Yong-Min;Sin, Yong-Ho;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.1-332.1
    • /
    • 2016
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-Schr?dinger equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

  • PDF

Absolute Configuration of ${\beta}$-agarofuran nucleus of euojaponine C by CD exciton chirality method

  • Ryu, Jae-Ha;Ryu, Shi-Yong;Han, Yong-Nam;Han, Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.76-79
    • /
    • 1997
  • A new celastraceae alkaloid, euojaponine C has been isolated from the methanol extract of the root bark of Euonymus japonica. With the relative stereochemistry of euojaponine C established by NOESY data, the absolute stereochemistry has been determined by circular dichroism (CD) exciton chirality method. The CD of the 2, 5-bis-phenyl benzoate of triacetonide derived from the LiAlH$_{4}$, hydrolysate, euonyminol shows that the configuration of C-2 and C-5 are both R.

  • PDF

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya;Peter, A. John
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.13-27
    • /
    • 2015
  • Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.