DOI QR코드

DOI QR Code

Two-dimensional Nature of Center-of-mass Excitons Confined in a Single CdMnTe/CdTe/CdMnTe Heterostructure

  • Lee, Woojin (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University) ;
  • Kim, Minwoo (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University) ;
  • Yang, Hanyi (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University) ;
  • Kyhm, Kwangseuk (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University) ;
  • Murayama, Akihiro (Graduate School of Information Science and Technology, Hokkaido University) ;
  • Kheng, Kuntheak (CEA, INAC-SP2M, Nanophysique et Semiconducteurs Group) ;
  • Mariette, Henri (CEA, INAC-SP2M, Nanophysique et Semiconducteurs Group) ;
  • Dang, Le Si (Department of NANOscience, Institut Neel, CNRS)
  • Received : 2018.11.11
  • Accepted : 2018.11.23
  • Published : 2018.12.25

Abstract

We have investigated the dimensional nature of center-of-mass exciton confinement states in a CdMnTe/CdTe/CdMnTe heterostructure, where the CdTe well is too wide (144 nm) to confine both electrons and holes but able to confine whole excitons in the center-of-mass coordinate. Fine multiple photoluminescence spectra with a few meV separation were observed at 6 K. From the thickness dependence of the transition rate, they were attributed to even numbered center-of-mass exciton confinement states (N = 2, 4, 6, ${\cdots}$, 18). Dimensionality of the center-of-mass exciton confinement states was also investigated in terms of temperature dependence of radiative decay time. At low temperatures (${\leq}12K$), we found that the ground state excitons are likely localized possibly due to the barrier interface fluctuation, resulting in a constant decay time (~350 ps). With increased temperature (${\geq}12K$), localized excitons are thermally released, giving rise to a linear temperature dependence of radiative decay time as an evidence of two-dimensional nature.

Keywords

KGHHD@_2018_v2n6_589_f0001.png 이미지

FIG. 1. (a) The center-of-mass excitons are weakly confined in an intermediate size (~102 nm) compared to strongly confined excitons of thin quantum wells (<10 nm) and unconfined excitons of bulk. (b) When a CdTe layer (a = 144 nm) is sandwiched between two Cd0.9Mn0.1Te layers, only the even numbered CMX confinement states (N =2, 4, 6, 8, 10, ⋯, 18) are dominant. (c) PL spectrum at 4 K. The dominant PL peak near 1595 meV is involved with three CMX confinement states (N = 2, 4, 6). (d) CMX-polariton dispersion.

KGHHD@_2018_v2n6_589_f0002.png 이미지

FIG. 2. (a) Schematic diagram of excitation-correlation (EC) spectroscopy, where excitation of a delayed pulse pair gives rise to correlated emission signals (b). (c) Characteristic decay time (τc) for the excited CMX states. (d) Spectral intensity of EC signals for delay time (τ).

KGHHD@_2018_v2n6_589_f0003.png 이미지

FIG. 3. Time-integrated PL spectrum at 6 K (a), 18 K (b), 30 K (c) are fitted with two Gaussian functions to analyze (American English) the resolution-limited three (N = 2, 4, 6) confinement states (X) and other (N = 8, 10, ⋯, 18) excited states (X*), whereby temperature dependence of the central peak energy (d), linewidth (e), and normalized quantum efficiency (f) are obtained.

KGHHD@_2018_v2n6_589_f0004.png 이미지

FIG. 4. Time-resolved PL intensity of X (N = 2, 4, 6) (a) and X* (N = 8, 10, ⋯, 18) (b) were measured for increasing temperature, whereby temperature dependence of the radiative decay times (c) were also obtained. A theoretical model [28] (dotted line) of temperature dependent radiative recombination time (dotted line) was also compared, which suggest that the CMX confinement states show a two-dimensional nature when thermal energy is large enough (≲12 K).

References

  1. H. Mariette, N. Magnea, and H. Tuffigo, "Optical investigation of CdTe/CdZnTe Heterostructures," Phys. Scripta T39, 204-210 (1991). https://doi.org/10.1088/0031-8949/1991/T39/031
  2. H. Tuffigo, B. Lavigne, R. T. Cox, G. Lentz, and N. Magnea, "Strong effects of electron-hole Coulomb interaction on optical properties of CdTe quantum wells," Surf. Sci. 229, 480-483 (1990). https://doi.org/10.1016/0039-6028(90)90935-2
  3. Y. M. d'Aubigné, L. S. Dang, A. Wasiela, N. Magnea, F. d'Albo, and A. Million, "Quantization of excitonic polaritons in CdTe-CdZnTe double heterostructures," J. Phys. Colloques 48, C5-363-C5-366 (1987).
  4. H. Tuffigo, R. T. Cox, G. Lentz, and N. Magnea, "Optical properties of excitons in II-VI quantum wells: importance of centre-of-mass quantization," J. Cry. Grow. 101, 778-782 (1990). https://doi.org/10.1016/0022-0248(90)91079-6
  5. H. Tuffigo, R. T. Cox, N. Magnea, Y. M. d'Aubigne, and A. Million, "Luminescence from quantized excitonpolariton states in $Cd_{1-x}Zn_xTe/CdTe/Cd_{1-x}Zn_xTe$ thin-layer heterostructures," Phys. Rev. B 37, 4310-4313 (1988). https://doi.org/10.1103/PhysRevB.37.4310
  6. J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, "Linewidth dependence of radiative exciton lifetimes in quantum wells," Phys. Rev. Lett. 59, 2337-2340 (1987). https://doi.org/10.1103/PhysRevLett.59.2337
  7. H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, "Thermalization effect on radiative decay of excitons in quantum wires," Phys. Rev. Lett. 72, 924-927 (1994). https://doi.org/10.1103/PhysRevLett.72.924
  8. H. Kim, W. Lee, S. Park, K. Kyhm, K. Je, R. A. Taylor, G. Nogues, L. S. Dang, and J. D. Song, "Quasi-one-dimensional density of states in a single quantum ring," Sci. Rep. 7, 40026 (2017). https://doi.org/10.1038/srep40026
  9. W. Lee, T. Kiba, A. Murayama, C. Sartel, V. Sallet, I. Kim, R. A. Taylor, Y. D. Jho, and K. Kyhm, "Temperature dependence of the radiative recombination time in ZnO nanorods under an external magnetic field of 6T," Opt. Express 22, 17959-17967 (2014). https://doi.org/10.1364/OE.22.017959
  10. S. Chen, M. Yoshita, A. Ishikawa, T. Mochizuki, S. Maruyama, H. Akiyama, Y. Hayamizu, L. N. Pfeiffer, and K. W. West, "Intrinsic radiative lifetime derived via absorption cross section of one-dimensional excitons," Sci. Rep. 3, 1941 (2013). https://doi.org/10.1038/srep01941
  11. G. W. p't Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, "Giant oscillator strength of the excitons in GaAs," Phys. Rev. B 35, 8281-8284 (1987). https://doi.org/10.1103/PhysRevB.35.8281
  12. H. P. Wagner, A. Schatz, R. Maier, W. Langbein, and J. M. Hvam, "Interaction and dephasing of center-of-mass quantized excitons in wide $ZnSe/Zn_{0.94}Mg_{0.06}Se$ quantum wells," Phys. Rev. B 57, 1791-1796 (1998). https://doi.org/10.1103/PhysRevB.57.1791
  13. I. Lawrence, G. Feuillet, H. Tuffigo, C. Bodin, J. Cibert, and W. W. Ruhle, "Optical study of an asymmetric double quantum well system: CdTe/CdMnTe," Acta Phys. Pol. A 84, 637-640 (1993). https://doi.org/10.12693/APhysPolA.84.637
  14. K. Kheng, R. T. Cox, Y. M. d'Aubigne, F. Bassani, K. Saminadayar, and S. Tatarenko, "Observation of negatively charged excitons X- in semiconductor quantum wells," Phys. Rev. Lett. 71, 1752-1755 (1993). https://doi.org/10.1103/PhysRevLett.71.1752
  15. O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, "Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe," Phys. Rev. B 50, 10780-10787 (1994). https://doi.org/10.1103/PhysRevB.50.10780
  16. H.-z. Wu, A.-l. Yang, J.-z. Wu, Z.-z. Li, "Exciton properties of diluted CdTe/CdMnTe quantum wells," Chin. Phys. Lett. 15, 734-736 (1998). https://doi.org/10.1088/0256-307X/15/10/013
  17. J. J. Hoffield and D. G. Thomas, "Theoretical and experimental effects of spatial dispersion on the optical properties of crystals," Phys. Rev. 132, 563-572 (1963). https://doi.org/10.1103/PhysRev.132.563
  18. D. von der Linde, J. Kuhl, and E. Rosengart, "Picosecond correlation effects in the hot luminescence of GaAs," J. Lum. 24/25, 675-678 (1981). https://doi.org/10.1016/0022-2313(81)90068-5
  19. A. M. de Paula, R. A. Taylor, C. W. W. Bradley, A. J. Turberfield, and J. F. Ryan, "Investigation of inter-valley scattering and hot phonon dynamics in GaAs quantum wells using femtosecond luminescence intensity correlation," Superlattice. Microst. 6, 199-202 (1989). https://doi.org/10.1016/0749-6036(89)90122-5
  20. R. Mondal, B. Bansal, A. Mandal, S. Chakrabarti, and B. Pal, "Pauli blocking dynamics in optically excited quantum dots: A picosecond excitation-correlation spectroscopic study," Phys. Rev. B 87, 115317 (2013). https://doi.org/10.1103/PhysRevB.87.115317
  21. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, "Acoustic phonon broadening mechanism in single quantum dot emission," Phys. Rev. B 63, 155307 (2001). https://doi.org/10.1103/PhysRevB.63.155307
  22. L. C. Andreani, A. d'Andrea, and R. del Sole, "Excitons in confined systems: from quantum well to bulk behaviour," Phys. Lett. A 168, 451-459 (1992). https://doi.org/10.1016/0375-9601(92)90535-T
  23. R. C. Miller, D. A. Kleinman, W. A. Nordland, Jr., and A. C. Gossard, "Luminescence studies of optically pumped quantum wells in $GaAs-Al_xGa_{1-x}As$ multilayer structures," Phys. Rev. B 22, 863-871 (1980).
  24. D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, "Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy," J. Appl. Phys. 103, 063502 (2008). https://doi.org/10.1063/1.2841199
  25. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, "Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils," Appl. Phys. Lett. 94, 261904 (2009). https://doi.org/10.1063/1.3159829
  26. M. Lomascolo, P. Ciccarese, R. Cingolani, R. Rinaldi, and F. K. Reinhart, "Free versus localized exciton in GaAs V-shaped quantum wires," J. Appl. Phys. 83, 302-305 (1998). https://doi.org/10.1063/1.366683
  27. M. Colocci, M. Gurioli, and J. Martinez-Pastor, "Exciton relaxation dynamics in quantum well heterostructures," Le J. Phys. IV 3, C5-3-C5-10 (1993).
  28. L. C. Andreani, "Radiative lifetime of free excitons in quantum wells," Solid State Commun. 77, 641-645 (1991). https://doi.org/10.1016/0038-1098(91)90761-J
  29. N. Magnea, F. Dal'bo, C. Fontaine, A. Million, J. P. Gaillard, L. S. Dang, Y. M. d'Aubigne, and S. Tatarenko, "Mismatch strain measurements of MBE grown CdTe," J. Cry. Grow. 81, 501-504 (1987). https://doi.org/10.1016/0022-0248(87)90441-6