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This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy
of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic
oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit
time dependences are derived. These expressions can provide more solid physical basis for understanding 2-
dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum
master equation (QME) approach is employed for the derivation of multistep time evolution equations for
Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian
QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian

effects in a consistent manner.
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Introduction

Electronic excitation is the outcome of correlated motion
of electrons and is fundamentally quantum mechanical.
When they are put together at nanometer length scale, each
excitation loses its individuality and coherent superposition
of those excitations, excitons, can be formed. This is possible
even without physical contacts between chromophores because
of long range characteristics of Coulomb interactions in
particular. Thus, the energetics and the dynamics of delocalized
excitons in so called multichromophoric macromolecule
(MCMM) often result in optical properties that are distinctively
different from those of individual chromophores. Well known
examples of such MCMMs are photosynthetic light harvesting
complexes,'* conjugated polymers,”'* and dendrimers.!"""®
Excitons in these MCMMs are tunable but fragile, which are
being utilized positively for efficient and robust collection/
transfer of excitons in natural photosynthetic light harvesting
complexes.'®!” Similar utilization in synthetic MCMMs, if
possible, can lead to novel mechanisms of solar energy
conversion’>?! and sensor development. Detailed spectroscopic
studies of MCMM are needed to explore these possibilities.

In general, spectroscopic study of MCMM is difficult
because of broad range of dynamical time scales and the large
number of structural/energetic degrees of freedom. In under-
standing how their optical properties reflect the molecular level
structural and dynamical details, conventional linear spectro-
scopy is severely limited. Nonlinear spectroscopy of MCMM
has an important role to play in this regard.*>> Indeed, recent
progress in 2-dimensional electronic spectroscopy (2DES)**?
made it possible to identify quantum coherence lasting up to

"This paper is to commemorate Professor Kook Joe Shin's honourable
retirement.

500 fs in photosynthetic light harvesting complexes despite
significant amount of disorder and fluctuations. Theoretical
modelings of these 2DES signals have been made,*** but
clear understanding of the origins and effects of the coherent
quantum beating is not available yet. This motivates the need
for more advanced theoretical approaches that can provide
reliable and efficient description of exciton dynamics in such
MCMM systems. The formulation presented in this work
provides an important basis for developing such theoretical
approaches.

Hamiltonian

For a molecular system subject to an optical probe, the
total matter-radiation Hamiltonian (within the semiclassical
approximation of the radiation) is

Hr (1) = H+ Hind?), M

where H is the material Hamiltonian representing the
MCMM and its environment, and H;,(f) represents the
matter-radiation interaction. The material Hamiltonian can
be expressed as

H=Elg)Xgl + He+ Hey + H, 2

where |g) is the ground electronic state with energy &, H.
the exciton Hamiltonian, H.; the exciton-bath Hamiltonian,
and H, the bath Hamiltonian. Here, the “bath” represents all
other molecular and environmental degrees of freedom
interacting with the excitons. Thus, when the molecule is in
the ground electronic state, H reduces to

Hy= & 1g)gl + H. 3

When the molecules are electronically excited, H effectively
becomes
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Hee=H.+ Hep + Hp. (4)

For simplicity, only single exciton states are considered here
although consideration up to double exciton states may be
necessary for full analysis of 2DES signals. In the site excitation
basis, the exciton Hamiltonian has the following form:

H, = Zl: (Ez+56)ll><l|+%Az,rll><l’| ; ®)

where |/) is the state where only the /th chromophore is
excited and (£;+ &) is its energy. In this definition, &, is a
reference excitation energy of the MCMM, which can be
chosen to be the average of the excited state energies, the
lowest exciton state, or any other value that can represent the
average property of the excitons. Thus, E/s are values
comparable to differences of excitation energies in the single
exciton space. For later use, we introduce /. as the exciton
Hamiltonian without the contribution of &, as follows:

h.= He—fg <l = Ell EJiXI) +1§l;1, IAIDTT. (6)

When diagonalized, the exciton Hamiltonian can be
expressed as

H,=2(&+E)gXal, (7

where &; + &, is the energy of the exciton state | .
Equivalently, this can be expressed as

h,= Z£/|¢/><¢/| (8
J
Analogously, we can also define

hex =he + Hep + Hp. (9)

The unitary transformation matrix between the site basis
and the exciton basis is denoted as U. The matrix elements
of this transformation are defined as U;= (l|p), and the
following relation holds:

N
D= %Ujlo. (10)

The transition dipole vector for the excitation from |g) to
|[) is denoted as g4. Then, the total electronic polarization
operator for the transitions to the single exciton space of the
MCMM is given by

P =3 (Xl +lgXID
= ;jz<u,U;|@><g| +IgXp| Uyt
=2(D|0)el +e)Xe/D))
= [D)(g|+|g)XD], (1)
where D; = 24U} and D) = 5D p) .

Assuming three incoming pulses, the matter-radiation
interaction Hamiltonian is
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ik, r—iogt
H,(1)= ZE (1—1,)-ID){gle +H.c.
3 ik r—iot
= le o(1=1,)-Dj|@)(gle +H.c.

a=1j

3 ik, r—io,t

Z E (t—t,)-|D)Ygle * +H.c., (12)

where Eq(f—1,) is the amplitude of the ath pulse with
polarization vector &,. Thus, Eq(t — t,) = Eo(t — t5)&. It is
assumed that 3 > £, > #1. In the last line of Eq. (12), [D,) is
the sum of all the exciton states weighted by the components
of the transition dipoles along the direction &, and has the
following expression:

Do) = 28 D¢ (13)

Response Functions

General Expressions. Assume that the optical field is
active from #=0 and that the total density operator of the
material at this time is p(0)= |g)(g|p,, Where p»=e "/
Try{e ™} with = 1/ksT. Thus [ps, Hy] = 0. Then, the time
evolution operator governing the total material system for
t> 0 is given by

U = exp(+>{—% | ;der(f)} : (14)

where (+) represents chronological time ordering. Then, the
total density operator at time #,, is

Otn) = Utn) XONA (t). (15)

Expanding U(f) and U'() with respect to H.(f), and
collecting all the terms of the third order, we find the
following third order components of the density operator:

PNtw) = pit) + 05 (1) + puu(tn) + Py (1), (16)
where

iH(t,~t)/h

___l'_ I Lo (g )
pAt,) = = IO aItJ'0 dt ) dt"e

(e ™ H, (e ™ p(0)

iHt" /r iH(t,~1" )/7!

xe TH(t")e (17)
pult) = —= j"’dr JLar [ldrre ™" p(0)

oM H, t,,)eiH(t'—t”)/ﬁ H, (1)

zH(H)/r m[( )e iH(t,~ (18)
In Eq. (17), the integration over ¢ can be split into obtain the
following general expression: three regions, 0<¢"<?
t'<t"<t, and t<t"<t,. Relabeling the dummy time integration
variables in each region such that #>¢'> ¢, the three terms
can be rewritten so as to have the same time integration

X e
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boundaries as pi(,). The resulting third order components
can be expressed as

“’(z,,,)——h3 j”’dr j dr' j dz"zT(zm,z M) +He., (19)

where
t]’](tm’t,t/’t//) = e—iH(tm—t/)/h [_Il_m(t/)e_il_](tr_tu)/h
X Hi(t")e-it"1 o(0) ettt Hi,(£) =0 | (20)

'E(tm,t,t',t") = o H(t,~0/h [_Iim(t)e—iH(tm—t’)/h

X Hi(t")e-iHt"h (0) eitith Hu(t') eiH—1"h 1)

Tttty = e HOn= O [, () e-iH(-1)

X Hint") e-itirin o () eiHt"/n I-I,-,,,(t")eiH(’m"”)/h , (22)

Tatmtt'1") = e Hul™ (0)eitit'h Hinlt")
X @ H( 1"V Hiy(t") @i Hy(£) e n=0 (23)

In the above expressions, Egs. (20)-(22) come from pi(t,)
and Eq. (23) comes from oy (t).

The corresponding third order contribution to the polarization
can be calculated by taking the trace of the where scalar
product between P, Eq. (11), and p°(#,), Eq. (19). The
resulting expression for the third order polarization at time #,
cna be shown to be

PV (1) = T (PP (1)}

2 4 1 ' /.
= Im ("de | dt' [ de" Tr{PT(t,t,t ")}, 24
2, m [ d [ dr [ di" Tr{PT1,,1,0,1")} (24)

where “Im” implies imaginary part of the complex function.

Denote the unit vector of the polarization being measured
at time #, as &, Taking scalar product of this with the
integrand of Eq. (24) and considering only those terms where
interactions with £, E>, and E5 occur in the chronological
order at ¢, ¢/, and 1, respectively, we obtatin the following
general expression:

&, Tr{PT (t,,1,1',1")} = Ex(t—1;) Ex(f'~1,)

i(wyt+ (/)21’—m,l”)e—i(k3+k2—k])»r

< Ey(t"—1))e

—iH (1, ~1')/h
xTr,,{el (=1 <D2| o Helt= t)/h’D )

iH ((—1")/h

Xppe " (Dsle

Hedtn ’”!Do}, (25)

&, Tr{PT,(t,,1,1',1")} = Ex(1—1;)Ex(1'~ 1)
i(o3t+ oyt —ot") —i(ky+ky,—k))-r
e

< E\(t"~1))e

—iH(t,~1)/h . o
« Trb{e 1 <D3’€ iH, (t t)/h|Dl>

iH (1 1"/ iH,(t,~t'")/ 1
<™ (Dje !D4>}, (26)
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&, Tr{PTy(1,,1,1',1")} = E5(1—1;)Ex(' 1)

i(oyt-ayt'+ot") —i(k3—Kky+k))-r
e

xE\(1"—1))e

—iH (t,~1)/h
xTrb{e e 7<D3|e

—iHg('~1")/ iH,(t,,~t")/T

xe pp(Dle

} ; @n

&, Tr{PT(t,,1,1',1")} = Ex(1—1;)Ex(f' 1))

i(ost-ayt'+o,t") —i(k;—KkyT k)1
e

—iH(t,~t")/h _: ‘o
y Trb{e L o ) ,Ob<D1|e iH, ('t )/7i|D2>

} . (28)

IDy) = Z Dyl gy 29

iHo(i—1')/hi iH, (1, 1)/}
xel g( )1<D36 ex\Um

where

At this point, it is convenient to introduce new time
variables, 7=t,—t, T,=t—1t, and 7'=¢—1". As will be
clear, these notations imply that zand 7’ are coherence times
and that 7, is the population time. Replacing the time
integration variables in Eq. (24) with these and taking scalar
product of P @ () with &, we obtain the following expression:

& P (1)
_2 4 i I t=T,—7
h% Im jo dr jo dT, jo dr
& Tr{PT{tm, tw—7, ty— 7Ty, ta— =T~ 7)} (30)
Inserting Egs. (25)-(28) into Eq. (30)
=) t, t,—7T L= T
P, =21 d dT dr
6, B70,) =2 I e[ |

{ES(tn — T— B)ES(tw — T~ Ty~ 1)
X E\(tw — T— Tp _ - tl)ei(wzmrwl)(tw)

—i(o,~o)T, ioT i(sﬂ—sg)( —7)h
e e e

—i(ky+ky—k, )T
e

T, )+ (5T, 7))

b p,
T Es(t,— 1-13)Ey(t,,—7-T,—1,)
* i(03—wy+ @)1, —7)
XE\(t,~1=T,~7—t)e » > "

i(o0,~o)T, —io\7 i(g,~g )T+ )T
e e

—i(k;—Ky+ k)T
e

T, )+ (5T, 7)), 31

where
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X(l)( z Tp, )= Trb{el'Hb(T+T,,)/75<D2‘e;hexr'/hD]>
pbeiHb(Tp+ 7 DD, }’ (32)

(5, T 7)) =T rb{eiHb 7 ( D3‘ e helT, VD
xppe (D feher TPV"!D&}’ o

—iH, v/

1Oz, T,7)=T rb{e <D3‘e‘ihexT//h‘ D,)

xe " fm/?b (Dy|eeAT T, ﬂm‘D4> }’ Y
i T 7
AT, )= Trb{e e Py
§ <D1 e,hexf/ﬁ|D2>e Hpr/ <D3 elhgxf/hD4>} . (35)

The above general expressions for the response functions are
equivalent to those in previous works®?*?® within the
assumption that only single exciton states contribute. Fourier
transforms of these with respect to rand 7’ can be related to
the spectra of 2DES if proper averaging overe the ensemble
of disorder is made.

Closed Form Expressions for Diagonal System-bath
Coupling in the Exciton Basis. For the case where the bath
Hamiltonian can be modeled by harmonic oscillators and the
exciton-bath coupling is diagonal in the exciton basis and is
linear in the displacements of harmonic oscillators, a simple
closed-form expression can be found for each response
function. Thus, suppose that H, = %, (b} b, + 1/2), where
b, and b are the lowering and raising operators of the nth
oscillator, and that

H,= Z5Hbj|(/’j><(/’j|
J
= Y 7h0,8 (b, + b o) o), (36)
Jj n

Then, the four response functions defined by Egs. (32)-(35)
can be calculated explicitly. Explicit expressions for these
can be derived based on generalized cumulant approach.®
Alternatively, polaron displacement operator can be used as
described in Appendix A. The resulting expressions are as
follows.

1) _ % * ig‘-vT/h—ié-f/ﬁ
x (T, zJ)_ggDz,le,jD/xSD/'Ae/ /

,ngi n(coth(ﬁhzw”)(l —cos(w,7))—i sin(w, r’))
xXe

Seogjoo Jang

72”g,2vy”(coth(ﬂ7'2”n) (1-cos(w,7)—i sin(w, z'))
xe

n’ p.

5,838y 000 2] (o5, T,)-cos(n (74 T, )-cos(@ (T, + ) +cos(o (7 T, )}

xe
2,8}, 18w 18I0(@, T )=sin(@,(7+ T ))=sin(@, (T, + ) +sin(o,(7+ T, + 7
><el &, n&,w {sin(@,T)—sin(,(7+7,)) sin(@, ( » )+sin(@, (7 p N , (37)
) _ * * iEv,r/hfl(EjfZ‘vv)T/ﬁfléjf/h
x (g, T[)) 7)= ZZD3,_/D1,_/D2,/"D4,‘,%e ! L '
J

72ngin(coth(ﬂh—2wf)(l—cos((un(Tp+ 7)) —i sin((un(Tp+ z’)))
xXe
2 po, .
—Z,,g/rv,,(coth(—z-j(l —cos(@,(7+ T ) +i sin(w,(r+ Tp)))
xXe
h('gﬁw")' T )+ +T +7
—2n8j,nEjr, nCOt 5 {cos(w, p)—cos(wnr)—cos(wn )+cos(aw,(t » N}
xXe
i%,8.8),wi=sin(®,T,)-sin(w, D)-sin(@, ) tsin(w,(t+T,+7))}
e "I v P P R (38)

i (0+ V= i(5-E) T,/

25T, )= X305 ,D, D) Dy ye
J

ﬁhzw"j(l —cos(w,T,))+i sin(m”Tp))

72,,g/2_,,(coth(
xXe

Ph0) 1 —cos(o, (5 T, + 0y sino, (5T, 7))

72,,g/zy.n(coth(
xXe

w”) {cos(@, (T, + 7)) —cos(@,(7))—cos(w, (7)) +cos(@,(7+T),)) }

ph
,z”g/.”g/,.ncoth( 3
xXe
i%,8; 18; ”,{—sin((u”(Tp+ 7'))-sin(w, 1)+sin(w, 7' )+sin(w,(7+ Tp))}
xe 1),

, (39

ig7/ht i T/h

2 T,v) =X XD\ D,y Dy D, e
JJ

,Engjn(cmh(ﬂﬁzw”j( 1-cos(w, )i sin(a, 7))

xXe

,an,z,yn(coth(@’)(l —cos(w,7))—i sin(a, r))
xXe

ﬂﬁ;)”) {cos(@,( T,+7))—cos(w,T,)—cos(w,(r+T,+ 7)) +cos(a,(7+T1,)) }

—zng]vngj,‘ncoth(
xXe

o1 {=Sin (e (T, )Y, T, sino, (4 1,4 ) sin(a (4T} (40)

In the above expressions, definitions of D, ; and g’, can this
case. First, using the cyclic symmetry within the be found in
Egs. (A5) and (A6).

Despite the simplicity of underlying assumption, the
expressions shown in Egs. (37)-(40) are quite complicated,
which provide a glimpse of possible complications in reliable
modeling of 2DES signals. First of all, it is ovbious that the
response functions cannot be simplified into products of
linear-spectroscopic lineshape functions as long as there are
common bath modes coupled to different exciton states.
comsidering the delocalized nature of excitons, it would be
extremely rare to find the case indepenndent of each other.
Second, terms oscillatory with respect to 7, can be found even in
the absence of interexciton system-bath coupling. This is
vecause transition to different exciton states is possible during the
interaction with the pulse. This way, coherence between different
exciton states can be maintained even in the absence of bath-
mediated inter-exciton couplings.
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Quantum Master Equation For General
System-bath Coupling

Let us consider the general situation where the system-bath
coupling and the bath Hamiltonian can be arbitrary. The
quantum master equation (QME) approach®” can Detailed
methods to calculate these response functions be employed
for the calculation of response functions in this case. First,
using the cyclic symmetry within the trace operation and the
fact that the exciton states commute with the bath Hamiltonian,
Egs. (32)-(35) can be recast into forms amenable for QME
approach as follows:

AT, )= Trb,e{e’”h‘ D yDe "
><IOb|D2><D]|eiHb(1"+Tp)/ﬁeih”z'/ﬁ} , (41)
2T, )= Trb,e{e‘f”"’/ﬁ|D4><D3|e'”’“””*””
% oD} (D2|eiH" f/ﬁeiha_(ﬁ Tp)/h} ’ (42)
1(3)( T, 7)=Tr, e{eiHb i DXD,| eﬂ'hﬂ T!/he—[Hb v/h
pr|Dz><D1|e”'”“””””’}, 3)
25T, 7)= Trb,e{e"””‘ T DD
y eihex f/heiHbT/ﬁ D) <D3|em"" r/ﬁ} . (44)

Detailed methods to calculate these response functions
based on the QME approach are described below.

Calculation of #Y(5,T,7). For the calculation of
25,1, 7), let us define

iH,7/h

—ih, /T
GP()=e " D)D", (45)

(T, 7y =GOy (46)

—iH, /N ih, v

G5 T, )= " IDXDAGY (T, )e @)
Define g\"(7), g(zl)(Tp, 7), and g\(z, T, 7) as traces of
APy, Ggl)(Tp,r’), and Ggl)(r, T, 7) over the bath

degrees of freedom, respectively. Then,
BT, ) = Tr (g (5T, 7)} (48)

Unlike the conventional QME, three time arguments are
involved in g{"(7, T, » 7). The time evolution with respect to
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7 can be considered first. Appendix B provides a detailed
description. The resulting QME has an inhomogeneous
termm which in turn depends on the prior time evolutions
during 7, and 7. Different QMEs have to be derived for
these as well. As can be seen in the Appendix B.1, explicit
time evolution for 7, is not necessary for the present case.
However, explicit time evolution with respect to 7’is needed.
Appendix B. 1 provides formally exact QMEs for the following
two reduced system operators:

ih,7/h

g =e""g(7) (49)

~(1 1 —ih,7/h
&1, ) =5 T, :

st ps p?

7)e (50)
Within the 2nd order approximation, all the time evolution
operators involving Or Hes or HerQOr in Egs. (B9) and (B11)
can be disregarded. Thus, we obtain the following approxi-
mations:

d )
4 sWryx
dz,gl (7)
1 7 ~ ~ .
5 J, A Trot o Hen( ) Hen(5) 1 (5) (51)
d ~(1) 1 —ih, 7/h
Z_g3 (% 7, 7)= —%5|D4>(D3|e

~ - il (T,+7) ~
< [[dsTry Ha)pi) ()™ Hen(2)}
=[5, T O Tryt pyHen(s) Hea( 2} (52)

The initial conditions for the above eqlfations are gﬁ”(O) =
~(1
DDy and &(0,7,,,7) = [D)XDylg) (7).
Calculation of ¥®(7,T,,7). For the calculation of #?(z,T},7)
we define

iH,7/h

—~ih, /T
GP(2)=e " p,ID\)D,Je (53)

G, y=e "GO (e (54)

—iH, 7l

) B @) ih, v/h

Gy(r, T, 7)=e IDXD5|G; (T, T)e (55)
The traces of these operators over the bath degrees of
freedom are respectively defined as g\”(7'), g2(T »» 7)), and
g§3)(r, T,, 7). Then,

22T, 7)=Trie)(5 T, 7))} (56)

Explicit time evolution with respect to all of z, 7, and 7’ are
necessary in the present case. Appendis B. 2 provides exact
QME:s for the following interaction picture system operators:

ih, /T

g2(?) (57)

- in,T ~ih, T,/
2T, vy=c"""gyT, ) " (58)

g(r)=e

—ih, v/l

&N T, ) =g, T, 7)e

st po YT pd

(59
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Up to the 2nd order of H.;, the formally exact QMEs, Eqs.
(B13), (B17), and (B19), can be approximated as

~(2)
dr’ )
z—;;zfofdsrr,,{pbﬁeb(f)ileb(s»g&”(s), (60)
ar, A1, )~ 1T, 7)
[T LT La)pn} 5, 7) (61)
where

~, ~ _,[hf
B, z’)z—%la jofdsTrb{Leb(Tp)e

lh T/h o~
xe Hen(5)pp27(5)} 5 (62)
and
d-
C-J-Tg3 o7, )~ (5, T,7)
L [ A2 T, T HaHo (9P} (63)
with
1(2)( 7, Ps T’)N_J dsTrb {( £the_i£eTp

~iLy 7 —ih T/~

xe e Ho(s)p,a" )(s))Heb(r)}

1.7, —iLyT, —iL,T,~, ~
+ﬁ.|'0 dsTr, {(e "o T Lop(8)E(S, 7))
x Hp( r)} . (64)
The initial conditior;s are su<2:h that &0, T f’ ) =
DYDi|ex(T, ¥),  &7(0,7) =g () and  £7(0) =

|D 1><D 2| )
Calculation of »¥(5T,,7). For the calculation of
25T, 7), we can define

—iH,7/h —ih,, T/h
GP(2)=e " p DD e , (65)
GO, y=e "GPy (66)
—iH, ©/h r/h
(5T, )=e " IDXDLGENT, 2)e” (67)

The traces of these operators over the bath degrees of
freedom are respectively defined as g\ (7)), g5 (T, v T), and
g (z, Ty, 7). Then,

T, 7)=Tr (4T, 7)) (68)

Three coupled equations are needed in this case as well.
Appendix B.3 provides exact QMEs for

ih,7/h

g =g (69)

Seogjoo Jang
~ ~ih,T/h
(T, ) =", e " (70)

—ih,v/h
BT, )=g) (5T, m)e . (71)

Up to the second order of ., , the exact QMEs, Egs. (B26),
(B30), and (B32), can be approximated as

——éﬁ”(f)~

L [“as# )Ty pyHen()Hen( D)} (72)
n2Jo

d 0T, )BT, )

dT,
[ AT LT Len(s)p} (s, ), (73)
where
B, f)N—h ) dsTrb{ a(Tye e
préﬁ”(s)ﬁeb(s)}, (74)
and
—g£>(, T, )~5 (5T, 7
= jodsgg”(s, T, )Try{Heo(s)Hen(7) p} (75)

with

iL,T,

ot b st e

—iL, 7 —ih,7/h

Xe e ¢ ,Dbg13)(S)Heb(S)H€b(T)}

l -
+ 7 IOT”ds Trb{(e

The 1n1t1al

il,T

og N T ()8, f)pb) x H@b(r)} .(76)

conditions 3for the abox;e equationg are
80,7, 7) = IDXDi|ey (T, 7). &7(0,7) =&7(7),
andgl(o) |D2><D|

Calculation of #*(5T,,7). For the calculation of
25,7, 7'), we can define

—iH,7/h ih, 7/h

G()=e " p DD, e (77)

G, y=e "GP ()" (78)
—iH, 7/h T/h

o1, ?y=e G, D)D" (79)

The traces of these operators over the bath degrees of
freedom are respectively denoted as g (4) (), g(4) (1p,7'), and
&P (5T, 7). Then,

A5, T,, )= Tr g (5T, 7)) (80)
As in the case of }'(7,T,,7) explicit time evoltuions are
necessary only for 7and 7. Appendix B. 4 provides the exact
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QME:s for

—ih, 7/l

() =g"(2)e (81)

~ih,v/h

85T, ) =g T, 7)e (82)

Within the 2nd order approximation, all the time evolution
operators involving OrH.» or He»QOr can be disregarded in
Egs. (B41) and (B43). Thus, we obtain the following
approximations:

—é‘,‘”(f>~

—I “dsg " (5)Try { pyFlen($) (7)) (83)

d | 2
2"(0T,7) = =, dsTry{ (P81 (5)Hen(s)

lH 7/h zﬁb(Tp+f)

ID,)(Ds))e Hep(7)}
- jofdsgg”(s, T, ©)Try{ pyHes(s)Hes( )} (84)

The initial conditions are such that ~(4)(0) |D,{D,| and

(4)(0, T,7)= g(14)(z’ )D,){D5| . These conclude the derivation
of all the multistep QMEs necessary for the calculation of
response functions.

Conclusion

This work provided a general formalism of four wave
mixing spectroscopy of MCMM systems, and developed a
new multistep QME approach for the calculation of third
order response functions. The consideration was limited to
single exciton states only, but this was not due to fundamental
limitation of the formalism but in order to present the main
idea in its simplest form. Thus, extension of the present work
to include double exciton states is possible, which will be
considered in the future. In addition, explicit expressions for
the response functions were derived for harmonic oscillator
bath diagonally coupled to exciton states. While this result is
not new, its derivation based on polaron displacement operator
is new. The value of this derivation is more heuristic than
practical, but it provides important insights for developing
approximations for more challenging cases with off-diagonal
exicton-bath coupling.

As was stated in the Introduction, the motivation of the
present work was to develop an efficient and reliable com-
putational methods that allow quantitative modeling of modern
2DES spectroscopy. For an MCMM system where dephasing
of exciton states due to diagonal exciton-bath couplings are
the dominant mechanisms of line broadening, the results
presented in Sec. IIL.B already serve that role. The expressions
for the response functions remain valid for any kind of
spectral densities with or without correlations among different
site excitation or delocalized exciton states. In addition,
averaging of that expression over an ensemble of the disorder
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is possible at least numerically, which allows more quantitative
assessment of homogeneous or inhomogeneous broadening
mechanisms of detailed 2DES signals.

Section IV amounts to the main result of the present work.
The multistep QMEs can describe inter-exciton transitions
due to bath-mediated coupling as well as radiation induced
ones in a consistent manner while including all the effects of
dephasing and relaxation mechanisms. The complicated forms
of the QMEs reffect the physical nature of the problem.
Multiple matter-radiation interactions alter the Hamiltonian
governing the system during time intervals in-between, which
are represented by different QMEs. However, memory effects
of the bath are sustained across the matter-radiation
interactions, which are taken care of by inhomogeneous terms.

While the complete derivation of multistep QMEs was a
significant step forward, much work still need to be done to
establish it as a general methodology. As was indicated in
the beginning of this section, generalization of this approach
to include double exciton states is necessary. Numerical tests for
simple model systems are also important in order to understand
what are the unique features that can be explained by the
multistep QMEs. Given that these objectives are accomplished,
the formalism of the present work can serve as an attractive
theoretical tool for quantitative analysis of various 2DES
results for MCMM systems.
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Appendix A: Derivation of Response Functions for
Diagonal Exciton-bath Coupling

Consider the first response function 3'(z,T,,7) given by
Eq. (32). For the case where the exciton-bath coupling is
diagor}gl In the exciton basis as shown in Eq. (36), ¢ """
and e “  can be expanded in the basis of [¢;)’s. The
resulting expression is

iHy(T+ T /T

25T, 7) = Zz,m{e (Do|o)

~i(g+ SHy+ Hy) 7/ iH(T,+ )k
e

(@’D1>pbe
i(8,+ 6H, ,+ H,) /i
(Ds|ppye” 7" <¢J"|D4>}7 (AD)

Let us introduce the following generator of polaron trans-
formation for the exciton state j:

S;=-2g;,(b,~by) (A2)

Then, one can show that
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¢(Hy+ 5Hy)e = Hy,-Y.g" o, (A3)

~i(e+ SHy+ Hy) 2/h

In Eq. (A1), inserting 1 = ¢e” before and after e ,
we find the following expression:

(])( 7 p,T,) ZZDZJDI/D3/D4/

-ie,.f/mie/.,hTrb {e-s_,,(Tp+ 7)
xe /00, (A4)
where
Da,j: <¢j’Da>’ (AS)
~ 2
%—%—§&ﬁwm (A6)
S(D)=-Xg.(be "~be ). (A7)

In deriving Eq. (A4), the following identity has been used:

eiHb r/heiS/e—iHb Vi _ eirS/(r) ' (AS)
The product of four displacement operators with different
time arguments in Eq. (A4) can be calculated using the
elef = eMPel" B2 an identity that holds between any operator
A and B as long as [4, B] commutes with 4 and B. In fact, the
following general identity can be established:

-S,(0) S, =5,0) S,0)

Tryi{e e’ e e’ p,}

—anjz,n{coth(ﬂh ;’")(1 —cos(w,(xr—x"))+i sin(wn(x—x'))}
=e

—anjz”{coth(ﬂhzw”)(l—cos(w”(y—y')))-*—i sin(wn(y—y'))}
xe

E,g,/ mgmcoth(ﬂi ){cos(w (x—y))—cos(w,(x'~y))—cos(w,(x—y"))—cos(w,(x'~)")) }

xe
y eiZ”gj,ﬂgM(sin(wn(x—y))—sin(w”(x'—y))— sin(wn(x—y’))+ sin(w”(x’—y’))}

(A9)

Application of the above identity to Eq. (A4) leads to Eq.
37).

For other response functions, similar manipulations lead to
the following expressions:

£P(.T,¢)=X3D; D, D; D,
JJ

iE (T, )/t iE (e T )/h -, (z’)
X e

Try{e

S(r+T,+7) —S(T,+7) S
Xe] P e NP

e'p} s (A10)

(5T, ¢)=X3D; D, D, D,
JJ

% ¢/ AT OV -S,
xe ’ T Try{e ’

SAt+T +7) —S(T,+7) S(7)
Xe] v P e AN e./ pb} (All)

Seogjoo Jang
4
()( 7, p’T’) ZZDI/DZ/D3/D4/
zglz’ﬂgjyr/hT { S S(f)
—SAT,+7) Sy(+T,+7
xe TN Dy, (A12)

Application of Eq. (A9) to the above expressions lead to
Egs. (38)-(40).

Appendix B: Derivation of Quantum Master Equations
for General System-bath Coupling

1. Equations for "(z,z',7"). First, define

(1) iH, v/l Hyh —ih
o1, )= (4T, e e
Lyt ~ih,v/h

=e G, e , (B1)

where [,() = [Hb,()]/ﬁ Then,
G(l)( )= G(l)( T z’)H (9, (B2)

3_ 3 (7 p7 =03 (7, - (T
where
IZIeb( T) - eih@ r/ﬁeiH;, r/ﬁHebe—iHh */he—ih,v/h

_ e[ﬁbreiﬁerHeb ‘ (B3)

We introduce a right-hand side projection operator such
that ()PR =ppTrp{-} and Qr=1—"Pg. Then, solving for
Gy 7) QR and inserting this into the time evolution

G (1, T,
equation of G (7, T, ') Pr, we find that

aps

_gBI)( [ p> T,) -

S0 7 IdsHLb(s)QR
ﬁT”b 3°(0,7, )QRe() Hey(7)

-[ ds& (s T, 7)

7 ds Hop(s' )Qr
X Trb{preb(S)QRe( -) eb(z-’)} (B4)
where
1) _ (1)
3 (0,7, 7) = [Dy(Ds|Try{ G, (7') }

=D, XDylg} (7 ), (B5)

(1)

G0,T, )0 = IDYDsIe G ()0,

= ID)XDife M (G(7)Qp) (B6)

Thus, solution of Eq. (B4) requires information on g;"(z"),
which can be obtained from G,V)(7")Pg, and that on G,'"(7")Qx.
The time evolutions for these can be obtained by employing
a similar procedure. Defining a similar interaction picture
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for G\"(7)

~ (1) lh 7/h tL'b

Gi'(7)=e G\(7) B7)

Then, employing a left hand projection operator P, defined
by Pu() = ppTi{(")} and Q=1 - P, and using the fact that
Q.G (0) =0, we obtain the following equations:

1) dS Q, Hop(s")

QLGI (z’)———j dse
x Q, Hep(5) P21 (5) (B8)

La() ==L [ asTry oy Hon()

% de’QLi:[eb(S’) ~ ~(1)
Xe(+) s QLHeb(S)}gl (S) (B9)

Combining Egs. (B6), (B7), and (B8), we find that

~ (1) lEh(Ter f)e—ihgf/ﬁ

G3 (0’ P T,)QR__h|D4><D3|

*éJ. ds' QL eb(s")

.[ dse(+) eb(s)pbg(ll)(s) > (B10)

where the fact that G,\"(7")Qr = Q,G\"(7") has been used.
Inserting this into Eq. (B4), we find that

—ih, ¢/l

—g;)< 4T, 7)= ——|D4><D3|e

% ds Q9 eb(s) )
I dsTr, e(+) eb(s),obgl (s)

i hf dsH(5)Qp
xXe ( ) eb( T)

~[[ds& (5.7, 7)

ﬁJ.ds ) _
% Try3 pyHen(s)Qrecy Ho(7) (B11)

Equations (BS8), (B9), and (B11) form a closed set of
equations that can be used to determine g3 (r Tp,7) starting
from the initial condition, g, )(0) |D,){D,| . These equations
are exact but impractical because calculation of the unprojected
part is difficult to obtain. Approximations of these equations
up to the second order of /7, are provided in the main text.

2. Equations for ,}f”(r,T 7 "). Define
—ih,v/h

G0 T, )= (@ T, e . (B12)

G3 (7,

,p,

Then, g,(7,T,7) = Tr G (5T, T, 7)}. The equation governing

the time evolution of 3”(#7,7) is the same as &(7,7T,7)
except for the difference in the initial condition. Thus,
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st p

L0(e1, ) -

6 L[ asttnr2z

ﬁT G2 (Oa P zJ)QRe(—)O I:[eb(T)

T, ~2
_J.Odsgg )(S7 p7 )

= | ds Hep(s Qp

x Tryd pyHen(s)Qpe ) He(7) ¢ 5 (B13)
where
70,7, ) = D XDy| Try{ GS(T,, )}
= D XDy|gS(T,, 7) (B14)
G(0,T,, 7) Q= IDXDS|GE(T,, 7) Oy (B15)

Unlike the previous case, one has to solve explicitly the time
evolution equations for ng)(T » 7). Employing the left
projection operator Pi(-) = ppTp{-} and Qr=1- Py, this
can be solved explicitly. Thus, one can show that

T
-
o Aflsotae
Q.62 (T, 7) = ey Q,G> (0,7)

ds QLﬁeb(S )

i j ”dsew Q, Les(5)p,85(s, ) (B16)

;T— T, 7) =

. i T"dsQLZ:d,(s) 5
—iTry Len(T e’ Q,G»0,7)

dA QL Lop(s") -
_[ dsTr, eb(T )e(+) Q1 Len(s)py

x&(s, 7)) , (B17)

where Q,G5(0,7)=G,(7)Q, and 22(0,7)=g"(7).
The equations governing the time evolution of G,(7)Qp
and g,(7) are the same as Egs. (B8) and (B9), except for the
different initial contidion, G1(0) = p,|D;){D,| . The resulting
equations are as follows:

-4 J ds' Q1 (s")
QLG](T,) - _—J. dse(ﬂ

X QLHeb(S)pbgl (S) (B18)
L) ==L [“asTry pyHon(¥)

dS’QLI:Ieb(S ) @
xXe : 9 eb(S)}g’ (s) (B19)

Using Egs. (B28) and (B16), and the following identities:
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GYNT, 7)Qp= Q,G5NT,, 7)

= QLe

—iL,T, —iLeT, ~ (2
Loy e”Gé)(Tp,z’)

_ e,l'[,pre—leng Qlégz)(Tp, z_/) (B20)
0,G%0,7)=0,G7(2)

Qe P

_ e,,'/;bz-’e—iher’/ﬁQLé(lz)(T/), (le)

the inhomogeneous term in Eq. (B13) can be expressed as

(1, 7)

i (7, -~
~(3) ﬁdeSHah(S)QR
Tl’b G2 (0, Tp, T’)QRe(_)

% H.y(7)

T N
—i | "dsQ,; Lep(s)
—iLpr 7[,CUTP JO -

iLy?
Trys|e e e e

,é J’ dsHo(s) QO

—ih, 7/ ~(2) 0

7 -
X e Q,Gi (7) | e, Hep(7)

T ~
—i | Pds' Q; Lep(s")
+1 T d ~iL,T, -iL,T, IO L
7;!.[0 rydss | e e e

[ @

x QrLen(5)85 (5, )Py ey Ha(D}p  (B22)

Inserting Eq. (B18) into the first of the above equation, we
obtain the following final expression:

B(5T1,7)

T ~
—i | 4sQ, L.
_Lrgr ~iLyT, ~iL,T, ’,[0 $QuLa(s)
_;'{2.[0 sTry | e e e

if7 -

L a5 Q, (s’
il —h, /N hL 1Herls)
xXe e e(+)

i T ~
2| dsH.(s)Qp

X QuHon()ps8) (5) | % ey Hey(7)

T ~
i [ P50, Euts’
LT ~iLyT, ~iL,T, l,[s ¥Cu L)
7_7.[0 sTryyle "Te e,

i J' dsH(5)Qp

xQLLe()E (5, 7)py ey’ Hes(7) (B23)

Seogjoo Jang

Similarly, the inhomogeneous term of Eq. (B17) can be
shown to be

BT, 7)

T ~
i [ dsQ,Lon(s)

=—iTry Len(T))e,) " Q,Gx(0,7)

C —i Tpd.YQLZeh(S)
~ 0
- -[o dsTryy Les(T))es)

—iL,,7
e

i (7 .
a5 @, Hops'
~ih,7/h h.[n WHers

xe e, Q, Her(s) 81 (5) (B24)

3. Equations for 3 (z,T},7"). Define

~ih,v/h

G (5T, )= "G5 T, e (B25)

Then, 8(5,T,, 7) = Tr,{G(1,T,, )} . The equation govern-

p’
ing the time evolution of égﬁ( r,T,,7) is the same as
(s, T, 7) except for the difference in the initial condition.
Thus,
d ;0 _
d_z'g3 (TsTps ZJ)_
. : i '[TdsHL,;,(S)QR N
%Trb G9(0,T,, 7)0re sy’ Heo(7)
- [[ds8(s. T, )
0
5 é Tds'I:Ie;,(s')QR~
xTr, preb(S)QRe(_)x Hen(7) ¢, (B26)
where
g(0,T,, ) = |D)XDs|Try { GSN(T,, 7
85 (0,7, 7) = |DyXD5|Try{ Gy (T, 7) }
= ID)(Ds1g5 (T, ) (B27)
~(3)
G5 (0,T,, 2)Qp = ID)D5|GS (T, ) Qy (B28)

The time evolution equations for gf)(Tp, 7') are the same as

T, 7» T') . Thus, one can show that

—i TpdsQLE@h(s)
~(3) _ 0
9,G> (Tp, 7)= e

i [ s @, Los')
T .
—i Jo”dse(ﬂ

0,G5(0,7)

Q, Len(5),85(s, 7) (B29)

d ~3)

L T )=

dTng ( P )
i [Mas 0, Lunls)

—iTry) Len(T e 0,G1(0,7)
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.
i [ rds' @, Lon(s)

_ L)TﬂdsTrb Le(Te)" Q, Len(5)p,

x g5, 7), (B30)

where  Q,G5(0,7)=GV(r)Q, and 29(0,7)=¢P (7).
The equatlons governing the time evolution of GV(7)Q,
and g(7') are as derived below.

Define a similar interaction picture for G1 (z’ ) such that

GOy="" 6wy " (B31)
Then, we obtain the following equations:
~03) Gy = z :ds'ﬁeh(s')QR
Gl (T,)QR J‘ dsg (S)Hgb(S)QRe(f)
~(3) 1 v, ~03) -
d_z’ (7)= P -[o dsg, (S)T’”b{preb(S) Qr
.[ a5 Ha()Qy
xe. H.o(7) } . (B32)

The initial condition is such that G{"(0) = p,|D,)XD,| .
Using Egs. (B28) and (B16), and the following identity

Q,G5°(0,7)= 0,G(7)= GV (7) Oz

zﬁbr’ 3) ih,7/h

Gi (7)Qe ©

the inhomogeneous term in Eq. (B13) can be expressed as

BT

(B33)

, p,
ir ) EO é.[ onSH"}’(S) O
Eﬁ 0 G3 (0,7, 7)Qpe Hep(7)
-
LT, LT, .[ o 4QuLen(s)

I .
—ﬁjodsTrb e e “ley,

—iL,T —ih,T/h(3)

xe e 27 () Hep(5) Qg

i j ds' () Qg %.[’dsifem) %
s 0 7
X e(,) e(,) Heb( T)

1 —iL, T, —il,T 'J-Tpds,QLsz(S,)
4= ("Trdsl|e "7e ‘e
72 [ o

,g dsflon(s)Qp _

X QLLA$ES (5, 7)py e He(7) ¢ (B34)
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Similarly, the inhomogeneous term of Eq. (B17) can be
shown to be

BT, 7)

T .
—i | PdsQ; Le(s)

=—iTr, Len(T, () Q,G2(0,7)

T .
—i | PdsQ, Lep(s)

- —iL
= %LjdsTrb Len(T))e ’ P

ds Ho(s")Qp

(&7 (5)Hen(5) Qp x ey )

1/1 7/h

(B35)

Equations for 3¥(7,T,,7'). The equations for this can be
derived in a similar manner as #'(,T,,7"). First, define

G( )( z p, 2")_ IHbr/hG(4)( ’ p’ ) ler/h —ih,t/h
_ IL, G(4)( z p, z") —ih,t/h (B36)
Then,
;gé“(r, T,7)=
@ j A
ﬁT G (0,7, z’)QRe() Ho(7)
J’d (4) s, p’
N L@ asnon
X Try3 pyHes(s) Qre )’ H.y(7) ¢, (B37)
where
70,7, ) = Tr, {G(2) } IDXD|
= g\ (2) DD, (B38)
~(4) ST,
G3 (0,7, 7)Qr= (e G1 (f))IDz><D |Qr
LE,, »
(G(7) QD)D) - (B39)

Thus, solution of Eq. (B4) requires information on g'¥ (7",
which can be obtained from G\”(z')Pg, and that on
G\ (')Qg. The ime evolutions for these can be obtained by
employing a 51m1lar procedure. Defining a similar interaction
picture for Gl (7') such that

G(4)(T') IE,, G(4)(T') —ih,7/h (B40)

Then, we obtain the following equations:
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~(4) o KT

G(7)Qy = L[ dsE () Hur() Qe y

d ~ 1 ~ >
et COR~ desgﬁ“(s)Trb{preb(s) Q

if(7

F[faharen
xely Hey(7) } (B41)
Combining Egs. (B6), (B7), and (B8), we find that
G(0,T,, 7)Qp = 7% o L) I sz () Fn(s)
%J‘:dy/i[””(‘v')g’* iH, 77
x e ¢"""D)D;. (B42)
Inserting this into Eq. (B37), we find that
d - 1 .
aTrg§4)( 51, 7) = 5] dsT rb{(pbgﬁ‘”(s)Heb(s)
%J.jdsrﬁ"”(sr)g” iH,7)
x e e "ID)(Dy))
T ,é,j;dvileb(.v)QR y
ST e (o
—Il:dségl)(s, T,7)
- % }iT'i]gh(-T')QR .
% Tryy poHen(s) Qre Hu(7)p. (B43)
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