• Title/Summary/Keyword: exchange-coupling

Search Result 258, Processing Time 0.018 seconds

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Magnetoresistance Properties of Spin Valves Using MoN Underlayer (MoN 하지층을 이용한 스핀밸브의 자기저항 특성)

  • Kim, Ji-Won;Jo, Soon-Chul;Kim, Sang-Yoon;Ko, Hoon;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.240-244
    • /
    • 2006
  • In this paper, magnetic properties and annealing behavior of spin valve structures using Mo(MoN) layers as underlayers were studied varying the thickness of the underlayers. The spin valve structure was consisted of Si substrate/$SiO_2(2,000{\AA})/Mo(MoN)(t{\AA})/NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(65\;{\AA})/Ta(25\;{\AA})$. Also, MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The resistivity of the MoN film increased as the $N_2$ gas flow rate was increased. After annealing at $600^{\circ}C$, XRD results did not show peaks of silicides. XPS results indicated MoN film deposited with 5 sccm of $N_2$ gas flow rate was more stable than the film deposited with 1 sccm of $N_2$ gas flow rate. The variations of MR ratio and magnetic exchange coupling fold were small for the spin valve structures using Mo(MoN) underlayers up to thickness of45 ${\AA}$. MR ratio of spin valves using MoN underlayers deposited with various $N_2$ gas flow rate was about 7.0% at RT and increased to about 7.5% after annealing at $220^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased to about 3.5%. Variation of $N_2$ gas flow rate up to 5 sccm did not change the MR ratio and $H_{ex}$ appreciably.

Magnetization Switching of MTJs with CoFeSiB/Ru/CoFeSiB Free Layers (CoFeSiB/Ru/CoFeSiB 자유층을 갖는 자기터널 접합의 스위칭 자기장)

  • Lee, S.Y.;Lee, S.W.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.124-127
    • /
    • 2007
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous CoFeSiB layers, were investigated. The CoFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with an emphasis given on understanding the effect of the amorphous free layer on the switching characteristics of the MTJs. CoFeSiB has a lower saturation magnetization ($M_s\;:\;560\;emu/cm^3$) and a higher anisotropy constant ($K_u\;:\;2800\;erg/cm^3$) than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003\;erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the Si/$SiO_2$/Ta 45/Ru 9.5/IrMn 10/CoFe 7/$AlO_x$/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs structure, it was found that the size dependence of the switching field originated in the lower $J_{ex}$ using the experimental and simulation results. The CoFeSiB synthetic antiferromagnet structures were proved to be beneficial for the switching characteristics such as reducing the coercivity ($H_c$) and increasing the sensitivity in micrometer size, even in submicrometer sized elements.

Water Column Properties and Dispersal Pattern of Suspended Particulate Matter (SPM) of Marian Cove during Austral Summer, King George Island, West Antarctica (남극 킹죠지섬 마리안 소반의 하계 수층 특성과 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Ho-Il;Oh, Jae-Kyung;Kim, Yea-Dong;Kang, Cheon-Yun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.266-274
    • /
    • 1999
  • Vertical CTDT measurement at one point near tidewater glacier of fjord-head in Marian Cove, a tributary embayment of Maxwell Bay, South Shetland Islands was performed for 24 hours during the austral summer (January 21-22, 1998) to present water-column properties and SPM (suspended particulate matter) dispersal pattern in subpolar glaciomarine setting. Marian Cove shows three distinct water layers: 1) cold, freshened, and highly turbid surface plume in the upper 2 m, 2) warm, saline, and relatively clean Maxwell Bay water between 15-35 m in water depth, and 3) cold and turbid mid plume between 40-65 m in water depth. The surface plume is composed of silt-sized clastie particles mixed with flocculated biogenic detritus, and appears to originate from either supraglacial discharge by meltwater streams along the coast or water fall of ice cliff. Freshened and turbid mid plume consists exclusively of silt-sized clastic particles, resulting from subglacial discharge beneath the tidewater glacier. The disappearance of the two turbid plumes during the earlier period of measurement seems to be largely due to the breakup of the plumes by upwelling caused by strong easterly wind (> 8 m $sec^{-1}$). Thus, wind coupling over tidal effects regionally plays a major role in dispersal pattern of SPM as well as water exchange in Marian Cove.

  • PDF

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Analysis of Magnetic Isotropy Property using Magnetoresistance Curve of CoFe/Cu/CoFe/PtMn Multilayer Film (CoFe/Cu/CoFe/PtMn 다층박막의 자기저항 곡선을 이용한 자기 등방성 특성 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.123-128
    • /
    • 2017
  • The magnetic isotropy property from the magnetoresistance (MR) curve and magnetization (MH) loop for the PtMn based spin valve (SV) multilayer films fabricated with different the bottom structure after post-annealing treatment was investigated. The exchange biased coupling field ($H_{ex}$), coercivity ($H_c$), and MR ratio of Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/Ta(4 nm) SV multilayer film without antiferromagnetic PtMn layer are 0 Oe, 25 Oe, and 3.3 %, respectively. MR curve for the Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/Ta(4 nm) SV multilayer film showed $H_{ex}=2Oe$, $H_c=316Oe$, and MR (%) = 4.4 % with one butterfly MR curve having by the effect of antiferromagnetic PtMn layer. MR curve for the dualtype Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/CoFe(3 nm)/Cu(2.5 nm)/CoFe(6 nm)/Ta(4 nm) SV multilayer film showed $H_c=37.5Oe$ and 386 Oe, MR = 3.5 % and 6.5 % with two butterfly MR curves and square-like hysteresis MH loops. The anisotropy property in CoFe spin valve-PtMn multilayer is neglected by the effects of a very small value of $H_{ex}$ and a very slightly shape magnetic anisotropy. This result is possible to explain the effect of magnetization configuration spin array of the bottom SV film and the top SV film of PtMn layer.

Synthesis, Sytructure, and Magnetic Properties of One-Dimensional Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs) (1차원 구조를 갖는 Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs)의 합성, 구조 및 자기적 성질)

  • Dong, Yong Kwan;Lee, Kun Soo;Yun, Ho Seop;Hur, Nam Hwi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.242-246
    • /
    • 2001
  • The quaternary thiophosphates, $A_2NiP_2S_6$ (A=Rb, Cs), have been synthesized with halide fluxes and structurally characterized by single-crystal X-ray diffraction technique. These compounds crystallize in the space group $C_{2h}^5-P2_1/n$ of the monoclinic system with two formula units in a cell of dimensions a=5.960(2), b=12.323(4), $c=7.491(3)\AA$, $\beta=97.05(3)^{\circ}$, and $V=546.0(3)\AA^3$ for Rb2NiP2S6 and a=5.957(4), b=12.696(7), $c=7.679(4)\AA$, $b=93.60(5)^{\circ}$, and $V=579.7(5)\AA^3$ for $Cs_2NiP_2S_6.$ These compounds are isostructural. The structure of $Cs_2NiP_2S_6$ is made up of one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chains along the a axis and these chains are isolated by $Cs^+$ ions. The Ni atom is octahedrally coordinated by six S atoms. These Ni$S_6$ octahedral units are linked by sharing three m-S atoms of the $[P_2S_6^{4-}]$ anions to form the infinite one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chain. For $Cs_2NiP_2S_6$, the magnetic susceptibility reveals an antiferromagnetic exchange interaction below 8K,which corresponds to the Neel temperature ($T_N$). Above $T_N$, this compound obeys Curie-Weiss law. The magnetic moment, C, and ${\theta}forCs_2NiP_2S_6$ are 2.77 B.M., 0.9593 K, and -19.02 K, respectively. The effective magnetic moment obtained from the magnetic data is agreed with the spin-only value of $Ni^{2+}d^8$(2.83 B.M.) system.

  • PDF

Magnetoresistance Effects of Magnetic Tunnel Junctions with Amorphous CoFeSiB Single and Synthetic Antiferromagnet Free Layers (비정질 CoFeSiB 단일 및 합성형 반강자성 자유층을 갖는 자기터널접합의 자기저항 효과)

  • Hwang, J.Y.;Kim, S.S.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2005
  • To obtain low switching field ($H_{SW}$) we introduced amorphous ferromagnetic $Co_{70.5}Fe_{4,5}Si_{15}B_{10}$ single and synthetic antiferromagnet (SAF) free layers in magnetic tunnel junctions (MTJs). The switching characteristics for MTJs with structures $Si/SiO_2/Ta$ 45/Ru 9.5/IrMn 10/CoFe 7/AlOx/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) were investigated and compared to MTJs with $Co_{75}Fe_{25}$ and $Ni_{80}Fe_{20}$ free layers. CoFeSiB showed a lower saturation magnetization of $560 emu/cm^3$ and a higher anisotropy constant of $2800\;erg/cm^3$ than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the CoFeSiB single and SAF free layer MTJs, it was frond that the size dependence of the $H_{SW}$ originated from the lower $J_{ex}$ experimentally and by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. The CoFeSiB SAF structures showed lower $H_{SW}$ than that of NiFe, CoFe and CoFeSiB single structures. The CoFeSiB SAF structures were proved to be beneficial far the switching characteristics such as reducing the coercivity and increasing the sensitivity in micrometer to submicrometer-sized elements.