• 제목/요약/키워드: excellent thermal stability

검색결과 294건 처리시간 0.022초

전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석 (Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector)

  • 김재곤;민영제;김목연;곽병섭;박현주
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

실리카 베이스 무기 바인더 기반의 TiO2 코팅액의 제조 및 특성 평가 (Fabrication and characteristics of TiO2 coating solution with silica-based inorganic binder)

  • 강우규;김혜진;김진호;황광택;장건익
    • 한국결정성장학회지
    • /
    • 제29권2호
    • /
    • pp.71-76
    • /
    • 2019
  • 자동화 시스템이 일반화되면서 제품 관리를 위한 라벨지(label)의 수요는 증가하고 있으며, 다양한 환경에서 사용할 수 있는 기능성 라벨지 개발이 빠르게 진행되고 있다. 인쇄회로기판의 경우 제작 과정에서 $300^{\circ}C$ 이상의 리플로우 솔더링 공정과 여러 차례의 세정 공정을 거치기 때문에 열적 화학적 안정성을 갖는 바코드 라벨지(barcode label)가 사용되고 있으나 황변(yellowing) 현상 발생으로 인한 인식률 저하의 문제가 발생하고 있다. 본 연구에서는 실리카 무기 바인더와 이산화티탄 백색안료를 사용한 복합 코팅층을 개발하고, 열적 화학적 안정성을 확보한 기능성 라벨지 연구를 진행하였다. 졸-겔 공정으로 제조한 실리카 무기 바인더는 기재(substrate)로 사용하는 폴리이미드 필름과 우수한 밀착성과 내마모성 특성을 갖는 것으로 확인하였다. 또한 이산화티탄 백색안료와 혼합하여 폴리이미드 필름에 백색의 코팅층을 제조할 수 있었으며, 복합 코팅층은 $400^{\circ}C$ 이상의 고온에서도 우수한 백색도와 광택도를 특성을 유지하는 것을 알 수 있었다. 또한 산성(pH 1.6)과 염기성(pH 13.6) 세정제를 통한 화학 처리 후에도 백색도와 광택도 변화가 일어나지 않는 우수한 화학적 안정성을 확인하였다.

Thermally Stable and Processible Norbornene Copolymers

  • Yoo Dong-Woo;Yang Seung-Jae;Lee Jin-Kyu;Park Joohyeon;Char Kookheon
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.107-113
    • /
    • 2006
  • Processible norbornene copolymers were realized by judiciously designing norbomene comonomers, which were themselves prepared by the Diels-Alder reaction of cyclopentadiene and benzoquinone followed by the isomerization and alkylation of alcohols. The norbornene copolymers containing these derivatized comonomers, prepared by [Pd($x_{2}CH-{3} $)$_{4}$][$SbF_{6}$]$_{2}$ catalyst, exhibited excellent solubility in many organic solvents as well as good thermal stability, as evidenced by their high glass transition ($T_{g}$) and decomposition ($\∼$350$^{circ}C$) temperatures. In addition, fairly strong adhesion to substrates such as glasses and silicon wafers was also achieved with these copolymers to overcome the limitations experienced by polynorbornene homopolymers and to make them attractive for many important industrial applications.

SADS(Siliide As Diffusion Source)법으로 형성한 코발트 폴리사이트 게이트의 C-V특성 (C-V Characteristics of Cobalt Polycide Gate formed by the SADS(Silicide As Diffusion Source) Method)

  • 정연실;배규식
    • 한국전기전자재료학회논문지
    • /
    • 제13권7호
    • /
    • pp.557-562
    • /
    • 2000
  • 160nm thick amorphous Si and polycrystalline Si were each deposited on to 10nm thick SiO$_2$, Co monolayer and Co/Ti bilayer were sequentially evaporated to form Co-polycide. Then MOS capacitors were fabricated by BF$_2$ ion-implantation. The characteristics of the fabricated capacitor samples depending upon the drive-in annel conductions were measured to study the effects of thermal stability of CoSi$_2$and dopant redistribution on electrical properties of Co-polycide gates. Results for capacitors using Co/Ti bilayer and drive-in annealed at 80$0^{\circ}C$ for 20~40sec. showed excellent C-V characteristics of gate electrode.

  • PDF

A review on thermomechanical properties of polymers and fibers reinforced polymer composites

  • Saba, N.;Jawaid, M.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.1-11
    • /
    • 2018
  • Polymer composites offered broad engineered applications, however their diversity get restricted owing to fluctuations in thermomechanical properties during heating or cooling hence great concern required prior their applications through thermomechanical analysis (TMA). Traditionally, TMA or dilatometry found to be simple, ideal, reliable, sensitive, excellent and basic thermal analytical technique. TMA provides valuable information on thermal expansion, glass transitions temperature (Tg), softening points, composition and phase changes on material of having different geometries simply by applying a constant force as a function of temperature. This compilation highlights the basics and experimental of TMA for both research and technical applications and also provide literature on TMA of polymers, hybrid composites, nanocomposites and their diverse applications.

Polydopamine-coated chitosan hydrogels for enzyme immobilization

  • Chang Sup Kim
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.512-518
    • /
    • 2023
  • To address inherent weaknesses such as low mechanical strength and limited enzyme loading capacity in conventional chitosan or alginate beads, an additional step involving the exchange of anionic surfactants with hydroxide ions was employed to prepare porous chitosan hydrogel capsules for enzyme immobilization. Consequently, excellent thermal stability and long-term storage stability were confirmed. Furthermore, coating the porous chitosan hydrogel capsules with polydopamine not only improved mechanical stability but also exhibited remarkable enzyme immobilization efficiency (97.6% for M1-D0.5). Additionally, it was demonstrated that the scope of application for chitosan hydrogel beads, prepared using conventional methods, could be further expanded by introducing an additional step of polydopamine coating. The enzyme immobilization matrix developed in this study can be selectively applied to suit specific purposes and is expected to be utilized as a support for the adsorption or covalent binding of various substances.

Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구 (Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor)

  • 정성봉;정연태
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Characteristics of Non-plasticizer PVAc Resin for Wood Products

  • Kim, Sumin;Kim, Hyun-Joong;Choi, Youn Mee;Jang, Sung-Wook
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.61-68
    • /
    • 2007
  • The applicable scope of adhesives in the current society is broad and currently, several types of PVAc resin are sold in the market for adhesives. PVAc resin is primarily used for wood works and paper adhesion. However, the PVAc resin itself has the disadvantages that its viscosity is highly temperature- dependent and the work condition and viscosity get worse at the low temperature in the winter seasons. Although phthalate-based plasticizer is used to complement these disadvantages, adhesion strength and heat-resistance are weakened by adding the phthalate-based plasticizer and in the winter period, the amount of quantity should be increased. Also in a high-density product, it worsens the work condition by causing a rise of viscosity and delays curing and in a low-density product, it worsens the storage stability by causing separate precipitation. In addition to these, the phthalate-based plasticizer as a material of causing environmental hormones is currently restricted in the advanced countries for its amount of use and also in the domestic market, it is necessary to prepare for the situation. This study has not only eliminated the disadvantages of PVAc resin emulsion without adding a phthalate-based plasticizer of causing these problems, but also synthesized the PVAc resin for timber adhesion that is excellent in woodwork, thermal-resistance, water-resistance, storage stability, and adhesion performance. As the result, it has proven an excellent performance in thermal resistance, water resistance, storage stability, and minimum film forming temperature.

Thermal Durability of Al2TiO5-Mullite Composites and Its Correlation with Microstructure

  • Kim, Hyung-Chul;Lee, Dong-Jin;Kweon, Oh-Seong;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.532-536
    • /
    • 2005
  • Thermal shock resistance of structural ceramics is a property that is difficult to quantity, and as such is usually expressed in terms of a number of empirical resistance parameters. These are dependant on the conditions imposed, but one method that can be used is the examination of density, Young's modulus and thermal expansion retention after quenching. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between $1000^{\circ}C$ and $1300^{\circ}C$. In this study, an excellent thermal shock-resistant material based on $Al_2TiO_5-mullite$ composites of various compositions was fabricated by sintering reaction from the individual oxides and adjusting the composition of $Al_2O_3TiO_2/SiO_2$ ratios. The characterization of the damage induced by thermal shock was done by measuring the evolution of the Young's modulus using ultrasonic analysis, density and thermal expansion coefficients.

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF