DOI QR코드

DOI QR Code

A review on thermomechanical properties of polymers and fibers reinforced polymer composites

  • Saba, N. (Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia) ;
  • Jawaid, M. (Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia)
  • Received : 2018.05.19
  • Accepted : 2018.06.18
  • Published : 2018.11.25

Abstract

Polymer composites offered broad engineered applications, however their diversity get restricted owing to fluctuations in thermomechanical properties during heating or cooling hence great concern required prior their applications through thermomechanical analysis (TMA). Traditionally, TMA or dilatometry found to be simple, ideal, reliable, sensitive, excellent and basic thermal analytical technique. TMA provides valuable information on thermal expansion, glass transitions temperature (Tg), softening points, composition and phase changes on material of having different geometries simply by applying a constant force as a function of temperature. This compilation highlights the basics and experimental of TMA for both research and technical applications and also provide literature on TMA of polymers, hybrid composites, nanocomposites and their diverse applications.

Keywords

Acknowledgement

Supported by : Newton-Ungku Omar Fund

References

  1. X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, M. Chen, J. Zhu, Adv. Compos. Hybrid Mater. (2018) 1.
  2. N. Saba, M. Jawaid, O.Y. Alothman, I. Inuwa, A. Hassan, Polym. Adv. Technol. 28 (2017) 424. https://doi.org/10.1002/pat.3921
  3. N. Saba, M. Jawaid, Hybrid Polymer Composite Materials: Properties and Characterisation, (2017) 57.
  4. N. Saba, M. Jawaid, O.Y. Alothman, M. Paridah, A. Hassan, J. Reinf. Plast. Compos. 35 (2015) 447.
  5. S.A. Hall, B.J. Howlin, I. Hamerton, A. Baidak, C. Billaud, S. Ward, PLoS One 7 (2012)e42928. https://doi.org/10.1371/journal.pone.0042928
  6. N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Constr. Build. Mater. 123 (2016) 15. https://doi.org/10.1016/j.conbuildmat.2016.06.131
  7. N. Saba, P.M. Tahir, M. Jawaid, Polymers 6 (2014) 2247. https://doi.org/10.3390/polym6082247
  8. N. Saba, P.M. Tahir, K. Abdan, N.A. Ibrahim, BioResources 11 (2016) 7721.
  9. I. Plesa, P.V. Notingher, S. Schlogl, C. Sumereder, M. Muhr, Polymers 8 (2016) 173. https://doi.org/10.3390/polym8050173
  10. C. Li, G.A. Medvedev, E.-W. Lee, J. Kim, J.M. Caruthers, A. Strachan, Polymer 53 (2012) 4222. https://doi.org/10.1016/j.polymer.2012.07.026
  11. C. Li, E. Coons, A. Strachan, Acta Mech. 225 (2014) 1187. https://doi.org/10.1007/s00707-013-1064-2
  12. N. Saba, M. Paridah, K. Abdan, N. Ibrahim, Thermal Properties of Oil Palm Nano Filler/kenaf Reinforced Epoxy Hybrid Nanocomposites, AIP Publishing, 2016 p. 050020.
  13. S. Kumar, R. Singh, J. Pet. Eng. 2013 (2013).
  14. N. Saba, M. Jawaid, M. Sultan, Thermal Properties of Oil Palm Biomass Based Composites, Elsevier, 2017 p. 95.
  15. J. Liszkowska, B. Czuprynski, J. Paciorek-Sadowska, J. Adv. Chem. Eng. 6 (2016) 1000148.
  16. S. Gaisford, V. Kett, P. Haines, Principles of Thermal Analysis and Calorimetry, Royal society of chemistry, 2016.
  17. C.E. Corcione, M. Frigione, Materials 5 (2012) 2960. https://doi.org/10.3390/ma5122960
  18. J. James, Thermomechanical Analysis and Its Applications, Elsevier, 2017 p. 159.
  19. L.L. Kosbar, T.J. Wenzel, J. Chem. Educ. 94 (2017) 1599. https://doi.org/10.1021/acs.jchemed.6b00922
  20. N. Saba, M. Jawaid, O.Y. Alothman, M. Paridah, Constr. Build. Mater. 106 (2016) 149. https://doi.org/10.1016/j.conbuildmat.2015.12.075
  21. E. Mahdi, J.-C. Tan, Polymer 97 (2016) 31. https://doi.org/10.1016/j.polymer.2016.05.012
  22. A. Takezawa, M. Kobashi, Compos. B: Eng 131 (2017) 21. https://doi.org/10.1016/j.compositesb.2017.07.054
  23. K. Takenaka, Sci. Technol. Adv. Mater. 13 (2012) 013001. https://doi.org/10.1088/1468-6996/13/1/013001
  24. K. Takenaka, M. Ichigo, Compos. Sci. Technol. 104 (2014) 47. https://doi.org/10.1016/j.compscitech.2014.08.029
  25. W. Miller, C. Smith, D. Mackenzie, K. Evans, J. Mater. Sci. 44 (2009) 5441. https://doi.org/10.1007/s10853-009-3692-4
  26. I. Yamada, K. Tsuchida, K. Ohgushi, N. Hayashi, J. Kim, N. Tsuji, R. Takahashi, M. Matsushita, N. Nishiyama, T. Inoue, Angew. Chem. In. Ed. 50 (2011) 6579. https://doi.org/10.1002/anie.201102228
  27. M. Azuma, W.-T. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, Nat. Commun. 2 (2011) 347. https://doi.org/10.1038/ncomms1361
  28. K. Oka, K. Nabetani, C. Sakaguchi, H. Seki, M. Czapski, Y. Shimakawa, M. Azuma, Appl. Phys. Lett. 103 (2013) 061909. https://doi.org/10.1063/1.4817976
  29. A. Fedorova, L. Michelsen, M. Scheffler, J. Eur. Ceram. Soc. 38 (2018) 719. https://doi.org/10.1016/j.jeurceramsoc.2017.08.034
  30. R. Huang, Y. Liu, W. Fan, J. Tan, F. Xiao, L. Qian, L. Li, J. Am. Chem. Soc. 135 (2013) 11469. https://doi.org/10.1021/ja405161z
  31. Y. Nawab, F. Jacquemin, P. Casari, N. Boyard, Y. Borjon-Piron, V. Sobotka, Compos. B: Eng. 50 (2013) 144. https://doi.org/10.1016/j.compositesb.2013.02.002
  32. Z. Ran, Y. Yan, J. Li, Z. Qi, L. Yang, Chin. J. Aeronaut. 27 (2014) 1180. https://doi.org/10.1016/j.cja.2014.03.010
  33. P. Bing, X. Hui-min, H. Tao, A. Asundi, Polym. Test. 28 (2009) 75. https://doi.org/10.1016/j.polymertesting.2008.11.004
  34. J. Zhao, L. Wu, C. Zhan, Q. Shao, Z. Guo, L. Zhang, Polymer 133 (2017) 272. https://doi.org/10.1016/j.polymer.2017.10.035
  35. F. Rodriguez, A. Boccardo, P. Dardati, D. Celentano, L. Godoy, Finite Elements in Analysis and Design, 141(2018) p. 26. https://doi.org/10.1016/j.finel.2017.11.012
  36. M. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, Compos. A: Appl. Sci. Manuf. 96 (2017) 110. https://doi.org/10.1016/j.compositesa.2017.02.015
  37. C. Karch, Model. Numer. Simul. Mater. Sci. 4 (2014) 104.
  38. K. Makarian, S. Santhanam, Z.N. Wing, Ceram. Int. 42 (2016) 17659. https://doi.org/10.1016/j.ceramint.2016.08.082
  39. K. Shirasu, A. Nakamura, G. Yamamoto, T. Ogasawara, Y. Shimamura, Y. Inoue, T. Hashida, Compos. A: Appl. Sci. Manuf. 95 (2017) 152. https://doi.org/10.1016/j.compositesa.2016.12.027
  40. N. Saba, M. Paridah, K. Abdan, N. Ibrahim, Mater. Chem. Phys. 184 (2016) 64. https://doi.org/10.1016/j.matchemphys.2016.09.026
  41. D.U. Shah, P.J. Schubel, Polym.Test. 29 (2010) 629. https://doi.org/10.1016/j.polymertesting.2010.05.001
  42. K.P. Menard, Thermomechanical Analysis Basics: Part 1 It's All Free Volume, PerkinElmer, 1996.
  43. J. Wippl, H.W. Schmidt, R. Giesa, Macromol. Mater. Eng. 290 (2005) 657. https://doi.org/10.1002/mame.200500120
  44. R. Yadav, M. Naebe, X. Wang, B. Kandasubramanian, Sci. Rep. 7 (2017) 7706. https://doi.org/10.1038/s41598-017-08122-7
  45. N. Kinjo, M. Ogata, S. Numata, Netsu Kokasei Jushi (J. Thermosetting Plast. Jpn.) 8 (1987) 208.
  46. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Carbon 45 (2007) 1446. https://doi.org/10.1016/j.carbon.2007.03.029
  47. A.A. Asif, B. John, V.L. Rao, K.N. Ninan, Polym. Int. 59 (2010) 986. https://doi.org/10.1002/pi.2817
  48. A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S.V. Lomov, A. W. VanVuure, I. Verpoest, Compos. A: Appl. Sci. Manuf. 41 (2010) 532. https://doi.org/10.1016/j.compositesa.2010.01.001
  49. N. Suzuki, S. Kiba, Y. Kamachi, N. Miyamoto, Y. Yamauchi, J. Mater. Chem. 21 (2011) 5338. https://doi.org/10.1039/c0jm03767b
  50. H. Wu, L.T. Drzal, Mater. Chem.Phys. 146 (2014) 26. https://doi.org/10.1016/j.matchemphys.2014.02.038
  51. R. Rothon, Particulate Fillers in Thermoset Plastics, Springer, 2017 p. 111.
  52. M.M. Raj, A. Thummar, L.M. Raj, H. Patel, Arch. Appl. Sci. Res. 7 (2015) 1.
  53. A. Thabet, Y. Mobarak, M. Bakry, J. Eng. Sci 39 (2011) 377.
  54. L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noe, M. Monthioux, Appl. Phys. Lett. 104 (2014) 051907. https://doi.org/10.1063/1.4864056
  55. E. Leroy, J. Dupuy, A. Maazouz, G. Seytre, Polymer 46 (2005) 9919. https://doi.org/10.1016/j.polymer.2005.07.061
  56. N. Saba, M. Jawaid, M. Sultan, O.Y. Alothman, Green Biocomposites for Structural Applications, Springer, 2017 p. 1.
  57. N. Saba, M. Jawaid, O.Y. Alothman, M. Paridah, A. Hassan, J. Reinf. Plast. Compos 35 (2016) 447. https://doi.org/10.1177/0731684415618459
  58. M.F. Hossen, S. Hamdan, M.R. Rahman, M.S. Islam, F.K. Liew, J.C. hui Lai, M.M. Rahman, Measurement 90 (2016) 404. https://doi.org/10.1016/j.measurement.2016.05.006
  59. N. Saba, T.M. Paridah, K. Abdan, N.A. Ibrahim, BioResources 10 (2015) 4530.
  60. Z. Shi, X.-F. Li, H. Bai, W.-W. Xu, S.-Y. Yang, Y. Lu, J.-J. Han, C.-P. Wang, X.-J. Liu, W.-B. Li, Heliyon 2 (2016)e00094. https://doi.org/10.1016/j.heliyon.2016.e00094
  61. N. Saba, M. Jawaid, M. Paridah, O. Alothman, Ind. Crops Prod. 108 (2017) 840. https://doi.org/10.1016/j.indcrop.2017.07.048
  62. W.K. Goertzen, M. Kessler, J. Appl. Polym. Sci. 109 (2008) 647. https://doi.org/10.1002/app.28071
  63. Y. He, S. Yang, H. Liu, Q. Shao, Q. Chen, C. Lu, Y. Jiang, C. Liu, Z. Guo, J. Colloid Interface Sci. 517 (2018) 40. https://doi.org/10.1016/j.jcis.2018.01.087
  64. A. Lavoratti, L.C. Scienza, A.J. Zattera, Carbohydr. Polym. 136 (2016) 955. https://doi.org/10.1016/j.carbpol.2015.10.008
  65. A. Fuith, M. Reinecker, A. Sanchez-Ferrer, R. Mezzenga, A. Mrzel, M. Knite, I. Aulika, M. Dunce, W. Schranz, Sens. Transducers 12 (2011) 71.
  66. L. Huang, G. Li, P. Zhu, R. Sun, D.D. Lu, C. Wong, IEEE (2014) 262.
  67. A.R. Soares, P.I. Ponton, L. Mancic, J.R. d'Almeida, C.P. Romao, M.A. White, B.A. Marinkovic, J. Mater. Sci. 49 (2014) 7870. https://doi.org/10.1007/s10853-014-8498-3
  68. I.S. Gunes, F. Cao, S.C. Jana, J. Polym. Sci. B: Polym. Phys. 46 (2008) 1437. https://doi.org/10.1002/polb.21480
  69. J. Lin, P. Tong, K. Zhang, X. Ma, H. Tong, X. Guo, C. Yang, Y. Wu, M. Wang, S. Lin, Compos. Sci. Technol. 146 (2017) 177. https://doi.org/10.1016/j.compscitech.2017.04.028
  70. L. Ren, K. Pashayi, H.R. Fard, S.P. Kotha, T. Borca-Tasciuc, R. Ozisik, Compos. B: Eng. 58 (2014) 228. https://doi.org/10.1016/j.compositesb.2013.10.049
  71. N. Suzuki, S. Kiba, Y. Yamauchi, Mater. Lett. 65 (2011) 544. https://doi.org/10.1016/j.matlet.2010.10.027
  72. F. Espinach, S. Boufi, M. Delgado-Aguilar, F. Julian, P. Mutje, J. Mendez, Compos. B: Eng. 134 (2018) 169. https://doi.org/10.1016/j.compositesb.2017.09.055
  73. Y.-H. Zhao, Z.-K. Wu, S.-L. Bai, Compos. A: Appl. Sci. Manuf. 72 (2015) 200. https://doi.org/10.1016/j.compositesa.2015.02.011
  74. Y. Gao, A. Gu, Y. Jiao, Y. Yang, G. Liang, J.T. Hu, W. Yao, L. Yuan, Polym. Adv. Technol. 23 (2012) 919. https://doi.org/10.1002/pat.1992
  75. C.W. Camacho, C.L. Tucker, S. Yalvac, R.L. McGee, Polym Compos 11 (1990) 229. https://doi.org/10.1002/pc.750110406
  76. M. Ramakrishnan, G. Rajan, Y. Semenova, P. Lesiak, A. Domanski, T. Wolinski, A. Boczkowska, G. Farrell, Smart Mater. Struct. 20 (2011) 125002. https://doi.org/10.1088/0964-1726/20/12/125002
  77. G. Suriati, M. Mariatti, A. Azizan, J. Mater. Sci.: Mater. Electron. 22 (2011) 56. https://doi.org/10.1007/s10854-010-0082-2
  78. R.A. Shanks, J. Therm. Anal. Calorim. 106 (2011) 151. https://doi.org/10.1007/s10973-011-1684-5
  79. A.N. Nakagaito, H. Yano, Cellulose 15 (2008) 555. https://doi.org/10.1007/s10570-008-9212-x
  80. Q. Wu, K. Chi, Y. Wu, S. Lee, Mater. Des. 60 (2014) 334. https://doi.org/10.1016/j.matdes.2014.04.010
  81. S.C. Paul, M.Y. Miah, A. Gafur, R.C. Das, J. Adv. Chem. Eng. 6 (2016) 159.

Cited by

  1. Experimental Study on Change in Mechanical Characteristics of E-Glass Fibre Reinforced Epoxy Composite by Adding Carbon Nanotube Layers vol.31, pp.6, 2019, https://doi.org/10.14233/ajchem.2019.21874
  2. Electrical resistance variation during tensile and self-heating tests conducted on thermoplastic polymer-matrix composites vol.224, pp.None, 2018, https://doi.org/10.1016/j.compstruct.2019.111001
  3. Dynamic and thermo‐mechanical properties of hybridized kenaf/PALF reinforced phenolic composites vol.40, pp.10, 2019, https://doi.org/10.1002/pc.25240
  4. Synthesis of Polyurethane Foam Considering Mixture Blowing Agents for Application to Cryogenic Environments vol.304, pp.11, 2019, https://doi.org/10.1002/mame.201900294
  5. Development of Poly(methyl methacrylate)-Based Copolymers with Improved Heat Resistance and Reduced Moisture Absorption vol.35, pp.48, 2018, https://doi.org/10.1021/acs.langmuir.9b02024
  6. Effect of Glass Fibers Thermal Treatment on the Mechanical and Thermal Behavior of Polysulfone Based Composites vol.12, pp.4, 2018, https://doi.org/10.3390/polym12040902
  7. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications vol.55, pp.7, 2020, https://doi.org/10.1007/s10853-019-04196-y
  8. Effect of a Novel Chemical Treatment on the Physico-Thermal Properties of Sugarcane Nanocellulose Fiber Reinforced Epoxy Nanocomposites vol.35, pp.2, 2018, https://doi.org/10.3139/217.3855
  9. Internal stress analysis of epoxy adhesively‐boned joints based on their thermomechanical properties at cryogenic temperature vol.137, pp.43, 2020, https://doi.org/10.1002/app.49311
  10. Evaluation of Polyurethane Elastomers for Encapsulation of Hydroacoustic Transducers vol.394, pp.1, 2018, https://doi.org/10.1002/masy.202000083
  11. Defect structure evolution of polyacrylonitrile and single wall carbon nanotube nanocomposites: a molecular dynamics simulation approach vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-68812-7
  12. Thermomechanical Properties of Carbon Fabric Reinforced Epoxy Laminates with h-BN and MoS2 Fillers vol.24, pp.6, 2018, https://doi.org/10.1590/1980-5373-mr-2021-0215
  13. Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate vol.121, pp.None, 2018, https://doi.org/10.1016/j.actbio.2020.11.026
  14. A Review on Materials and Technologies for Organic Large‐Area Electronics vol.6, pp.6, 2018, https://doi.org/10.1002/admt.202001016
  15. The effect of seawater aging on the pyrolysis of fishing nets vol.156, pp.None, 2018, https://doi.org/10.1016/j.jaap.2021.105160
  16. Anomalous thermally expanded polymer networks for flexible perceptual devices vol.4, pp.6, 2021, https://doi.org/10.1016/j.matt.2021.03.010
  17. Thermal and Chemical Characterization of Kenaf Fiber (Hibiscus cannabinus) Reinforced Epoxy Matrix Composites vol.13, pp.12, 2021, https://doi.org/10.3390/polym13122016
  18. Carbon Allotropes/Epoxy Nanocomposites as Capacitive Energy Storage/Harvesting Systems vol.11, pp.15, 2018, https://doi.org/10.3390/app11157059
  19. Design, Development and Evaluation of Thermal Properties of Polysulphone-CNT/GNP Nanocomposites vol.11, pp.8, 2021, https://doi.org/10.3390/nano11082080
  20. Thermal behavior and dielectric response of epoxy–boron nitride composites reinforced with short human hair fiber vol.42, pp.9, 2018, https://doi.org/10.1002/pc.26139
  21. Thermal Stability and Dynamic Mechanical Analysis of Benzoylation Treated Sugar Palm/Kenaf Fiber Reinforced Polypropylene Hybrid Composites vol.13, pp.17, 2018, https://doi.org/10.3390/polym13172961
  22. Analysis of impacts of thermal shocks on mechanical properties of E-glass fiber reinforced polyester composites vol.55, pp.25, 2021, https://doi.org/10.1177/00219983211017648
  23. Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: Analytical and finite element study vol.235, pp.10, 2018, https://doi.org/10.1177/14644207211019773
  24. Frontal polymerization-assisted 3D printing of short carbon fibers/dicyclopentadiene composites vol.71, pp.None, 2021, https://doi.org/10.1016/j.jmapro.2021.10.014
  25. Fire Behavior of Wood-Based Composite Materials vol.13, pp.24, 2018, https://doi.org/10.3390/polym13244352
  26. Two-dimensional THz reflectometry of a periodic structure obtained by additive technology vol.2140, pp.1, 2018, https://doi.org/10.1088/1742-6596/2140/1/012015