• 제목/요약/키워드: excavation method

검색결과 1,056건 처리시간 0.032초

Analysis of Peripheral Surface Settlement during Subway Excavation (지하철 굴착공사에 따른 인접지반의 침하 해석)

  • 문준석;권강오;김홍석;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.621-628
    • /
    • 2000
  • In this study, the influence of groundwater variation and surface settlement adjacent to the excavation site of subway station on $\bigcirc$$\bigcirc$ Gas station and the $\bigcirc$$\bigcirc$ building is analized. Measurement data of surface settlement, horizontal deformation and groundwater level are used to verify the results of Caspe analytical method and FLAC numerical analysis. Variation of groundwater level adjacent to the excavation site is modelled by the 3-D groundwater flow program, MODFLOW. The results of both the analytical method and the numerical method were quite close to the measurement data of surface settlement.

  • PDF

Development of finite element analysis model for multi-step excavation problem (시공단계를 고려할 수 있는 유한요소 해석 모델 개발)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • 제6권4호
    • /
    • pp.326-334
    • /
    • 1996
  • In underground construction the multi-step excavation sequence is commonly adopted for the convenience of the underground work. A numerical simulation method which is capable of analyzing the effects of excavation sequence on the stability of the opening is greatly needed. In this study a two dimensional finite element code was developed based on the effective numerical algorithm for the multistep excavation. The practical applicability of the model was verified for the simplified excavation sequences.

  • PDF

A preliminary study on economical efficiency of a room-and-pillar excavation method in comparison with 2-arch tunnelling method (2아치 터널 굴착 공법과의 비교를 통한 주방식 굴착 공법의 예비 경제성 검토 연구)

  • Lee, Chulho;Chang, Soo-Ho;Ahn, Sung-Youll;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제15권6호
    • /
    • pp.599-612
    • /
    • 2013
  • This study aims to investigate an economical efficiency of two excavation methods with respect to the room-and-pillar method for the underground space and conventional excavation method, i.e. 2-arch tunnelling method. For feasibility study, an excavation cost for both room-and-pillar method and 2-arch tunnelling method was estimated when the same space in operation was required. It was assumed that properties of reinforcements and rock were adopted from literatures. However, an excavation shape of the room-and-pillar method was assumed not to be the rectangular shape which is a general type in the room-and-pillar method but to be an arch shape in order to compare with the conventional excavation method (2-arch tunnelling) and to achieve the maximum bearing capacity of the structure during excavation. Consequently, the wider space in use or required and the better condition of rock we assumed, the more economical advantage we have in the room-and-pillar method than the 2-arch tunnelling method.

Displacement Comparison of a Braced Retaining Wall by Elasto-Plastic Analysis Program (탄소성 해석프로그램에 의한 버팀지지 흙막이벽의 변위 비교)

  • 신방웅;김상수;오세욱;김동신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.395-402
    • /
    • 2000
  • Recently, the deep excavations have been peformed to utilize the under ground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground occurs frequently. The analysis of the retaining structures is necessary to the safety of the excavation works. There are many methods such as elasto-plastic, FEM, and FDM to analyze the displacement of the retaining structure. The elasto-plastic method is generally used in practice. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The program for Windows was used the Visual Basic 6.0, and the Main of the program consists of three subroutines, SUB1, SUB2, and SUB3. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement by the Inclinometer(at three excavation work sites). The excavation method of each site is braced retaining wall using H-pile. Each excavation depth is 14m, 14m, or 8.2m. The results of the analyses are the followings ① In the multi-layer soil, the lateral displacement by the GEBA-1 and EXCAD which is considering the distribution of the strut load is equal to the measured displacement. Elasto-plasto programs can't consider the change of the ground water in clay. Therefore, the analysis displacement was expected only 20% of the measured wall displacement. ③ At the final excavation step, the maximum lateral displacement of analysis and field occurred 7∼18m at the 85∼92% of the excavation depth. ④ The maximum lateral displacement in clay, as 50mm, occurred on the ground surface.

  • PDF

A Study on Development of Artificial Neural Network (ANN) for Deep Excavation Design (깊은굴착 설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon;Abbas, Qaisar;Aizaz, Haider Syed
    • Journal of the Korean Geosynthetics Society
    • /
    • 제17권4호
    • /
    • pp.199-212
    • /
    • 2018
  • This research concerns the prediction method for ground movement and wall member force due to determination structural stability check and failure check during deep excavation construction. First, research related with excavation influence parameters is conducted. Then, numerical analysis for various excavation conditions were conducted using Finite Element Method and Beam-column elasto-plasticity method. Excavation analysis database was then constructed. Using this database, development of ANN (artificial neural network) was performed for each ground movements and using structural member forces. By comparing the numerical analysis results with ANN's prediction, it is validated that development of ANN can be used efficient for prediction of ground movement and structural member forces in deep excavation site.

Development of Back Analysis Program for Total Management Using Observational Method of Earth Retaining Structures under Ground Excavation (지반굴착 흙막이공의 정보화시공 종합관리를 위한 역해석 프로그램 개발)

  • 오정환;조철현;김성재;백영식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2001년도 정보화시공 학술발표회
    • /
    • pp.103-122
    • /
    • 2001
  • For prediction of ground movement per the excavation step, observational results of ground movement during the construction was very different with prediction during the analysis of design. step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc. however accuratly numerical analysis method was applied. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until present, the measurement system restricted by ‘Absolute Value Management system’only analyzing the stability of present step was executed. So, it was difficult situation to expect the prediction of ground movement for the next excavation step. In this situation, it was developed that ‘The Management system TOMAS-EXCAV’ consisted of ‘Absolute value management system’ analyzing the stability of present step and ‘Prediction management system’ expecting the ground movement of next excavation step and analyzing the stability of next excavation step by‘Back Analysis’. TOMAS-EXCAV could be applied to all uncertainty of earth retaining structures analysis by connecting ‘Forward analysis program’ and ‘Back analysis program’ and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The application of TOMAS-EXCAV was confirmed that verifed the three earth retaing construction field by back analysis.

  • PDF

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • 제17권3호
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

A Case Analysis of the Economic Impact on Accidents during Excavation (터파기 공사 사고의 경제적 영향 사례분석)

  • Go, Kwang-Ro;Lee, Ghang;Choi, Myung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.7-10
    • /
    • 2008
  • As the land price in the downtown area increases, buildings are becoming bigger, deeper and higher. Consequently, the importance of underground construction has increased. Although construction engineers make every effort to complete underground construction without any problem, construction failures like landslides and the collapse of a retaining wall occur because of the uncertainty of the soil conditions as well as the unexpected risks of excavation work. In order to prevent potential excavation accidents, it is essential to understand the causes and impacts of such accidents. However, there are only a few examples of construction failures, which show the economic impact on accidents during excavation because of the sensibility of the information. This paper presents two cases of excavation accidents, which were investigated by construction insurance company. The compensation for the accidents paid by the insurance company was compared with the estimated costs calculated based on the estimation method for excavation accidents proposed by our previous study. The comparison results showed that the estimate calculated by our method was much less than the actual compensation because the estimate solely focused on the construction costs whereas the compensation included other external factors.

  • PDF

A Study on the Earthwork Calculation for Reclamation (埋立을 위한 土工量 계산에 관한 硏究)

  • Mun, Du-Yeoul
    • Journal of Ocean Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.61-70
    • /
    • 1995
  • The purpose of this paper is to calculate the excavation volume of unequal interval grid using nonlinear boundary in eathwork volume determination for reclamation of the foreshore. A congruence area formula by first and third equation is compared with trapezoidal, simpson formulas to earthwork volume. And nonlinear spot level method of unequal interval grid is compared with linear and nonlinear spot level method of equal interval grid excavation volume. As a result algorithm of derived area and volume formula should provide a better accuracy than linear and nonlinear spot level currently in use. Practical application of each method to the excavation volume is illustrated by digital elevation model of aerial photogrammetry and model test of aquarium.

  • PDF

The deformation behavior of soil tunnels reinforced with RPUM and fiberglass pipes (RPUM과 유리섬유 파이프로 막장을 보강한 토사터널의 변형거동)

  • Nam, Gi-Chun;Heo, Young;Kim, Chi-Whan;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제4권3호
    • /
    • pp.185-193
    • /
    • 2002
  • In this paper, deformation behavior of shallow subway tunnel excavated in weathered soil and reinforcement effects of longitudinal support measures are investigated via three dimensional FDM analysis. Two excavation methods, half-face excavation and full-face excavation, are considered in simulation to study the influences of excavation methods on tunnel deformation behavior. In addition, the reinforcing effects of RPUM and fiberglass pipe are compared. Face extrusion, covergence, preconvergence, and sidewall displacement are investigated to analyze tunnel deformation behavior, and surface settlement is used to analyze the effects of excavation methods and longitudinal supports measures. The simulation results show that half-face excavation induces larger convergence, preconvergence, sidewall displacement, surface settlement than full-face excavation, while full-face excavation induces larger extrusion than half-face excavation. In addition, under same excavation method, all displacements are larger when RPUM is only used for longitudinal support than when RPUM is jointly used with fiberglass pipes.

  • PDF