• Title/Summary/Keyword: excavation data

Search Result 461, Processing Time 0.033 seconds

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

On Estimating Pit-Excavation Volume using Spline Surfaces without Boundary Conditions (경계조건이 없는 스플라인 곡면을 이용한 토공량 결정에 관한 연구)

  • Yoo, Jae-Chil;Mun, Du-Yeoul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.5-12
    • /
    • 2010
  • It is very important to get the accurate calculation of pit-excavation volume in many civil engineering projects. There have been common drawbacks to earlier methods of ground profiling, such dealing with sharp corners or the grid points any two straight lines. There are several papers of using spline surfaces to obtain more accurate calculations of the earthwork. In this paper, we propose an algorithm of finding a spline surface without boundary conditions which interpolates the given data and an appropriate method to calculate the earthwork. We present some computational results showing that our proposed method provides good accuracy.

Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection (경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

Analysis of Ground Deformation Deformation using Resistivity Monitoring Technique at a Tunnel Excavation Area (전기비저항 모니터링을 이용한 터널 주변 지반상태 변화 파악)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Park, Sam-Gyu;Kim, Ki-Seog;Jung, Lae-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-100
    • /
    • 2007
  • During tunnel excavation, drawdown of groundwater table or discharge from tunnel faces may not only reduce stability of tunnel and work efficiency but cause environmental problems. We have investigated the applicability of electrical resistivity survey for the establishment of the monitoring system for groundwater behavior and detecting flow channel of groundwater during tunnel excavation. The groundwater level was continuously measured at several points for 1 year. Survey was conduted at every 3 months using preinstalled electrical resistivity cables on site. The results show that observed changes in resistivity ratios in the area can be explained with observed changes in groundwater level. Thus, we believed that electrical resistivity analysed together with groundwater data can be applied for the monitoring of groundwater in tunnel area.

  • PDF

A Study on the Application of Soil-Reinforced Retaining Wall for Excavation Slope (절토사면에서 보강토 옹벽의 적용성 연구)

  • Byun, Yoseph;Wrryu, Woongryeal;Lee, Dongho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • Considering environmental issues and lack of space, it is a necessity to minimize the amount of excavation. Various types of excavation methods are being used in practice. This study proposes a reasonable method for estimating the earth pressure acting on a reinforced wall in front of a excavated slope. The measured data in the field and numerical analyses were used. Results of the study shows that the earth pressure acting on the excavated wall is less than that estimated by Rankine's equations. It was shown that when the excavated slope is used with the reinforced wall, the pressures acting on the reinforced wall can be greatly reduced.

Estimation from Field Tests of the Excavation Efficiency of an Improved Hydraulic Rock Splitting System (현장실험을 통한 개선된 수압암반절개시스템의 굴착 효율성 평가)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.719-730
    • /
    • 2021
  • An improved packer and injection system was developed to improve the efficiency of excavation by hydraulic rock splitting by reducing vibration and noise. Field testing of the system found hydraulic fractures limited in expansion and extension due to the loss of injection pressure by leackage from the cracks, and then the single packer applied to injection hole allowed to produce a sufficient tensile displacement for rock excavation. Numerical analysis based on the field test data could explain the development of cracks in the field experiments.

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

Measured structural response of a long irregular pit constructed using a top-down method

  • Yang, Sun;Yufei, Che;Zhenxue, Gu;Ruicai, Wang;Yawen, Fan
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.489-503
    • /
    • 2022
  • A 1257-m-long irregular deep foundation pit located in the central of Nanjing, China was constructed using the combined full-width and half-width top-down method. Based on the long-term field monitoring data, this study analyzed the evolution characteristics of the vertical movement of the columns, internal force of the struts, and axial force of the structural beam and slab. The relevance of the three mentioned above and their relationship with the excavation process, structural system, and geological conditions were also investigated. The results showed that the column uplift was within the range of 0.08% to 0.22% of the excavation depth, and the embedded depth ratio of the diaphragm wall and the bottom heave affected significantly on the column uplift. The differential settlement between the column and diaphragm wall remained unchanged after the base slab was cast. The final settlement of the diaphragm wall was twice the column uplift. The internal force of the struts did not varied monotonically but was related to numerous factors such as the excavation depth, number of struts, and environmental conditions. Additionally, the dynamic force and deformation of the columns, beams, and slabs were analyzed to investigate the inherent relationship and variation patterns of the responses of different parts of the structure.

Longitudinal Deformation Profile in Tunnel using Measured Data (계측자료를 이용한 터널의 종단변형도)

  • Jang, Won-Yil;Yang, Hyung-Sik;Chung, So-Keul
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.338-342
    • /
    • 2008
  • Longitudinal deformation profile(LDP) has been obtained mostly by numerical analysis. In this study, LDP was plotted by measured data from horizontal inclinometer and crown settlement. Deformation of foe ahead was determined by comparing to the maximum deformation point and deformation of after excavation was determined by regression of the measured crown settlement data. The result shows that crown deformation began as f3r as 3D ahead of the face. Crown settlement at the face was 40% of ultimate deformation, which was 10% higher than numerical results, and the deformation converged after excavation of 4D.