• Title/Summary/Keyword: exact order

Search Result 1,356, Processing Time 0.024 seconds

THE EXACT BERGMAN KERNEL AND THE EXTREMAL PROBLEM

  • Jeong, Moonja
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.183-191
    • /
    • 2005
  • In this paper we find the Laurent series expansions representing the reproducing kernels. Also we find the number of zeroes of the exact Bergman kernel via parallel slit domain in order to relate the exact Bergman kernel to an extremal problem.

  • PDF

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

Developing of Exact Tests for Order-Restrictions in Categorical Data (범주형 자료에서 순서화된 대립가설 검정을 위한 정확검정의 개발)

  • Nam, Jusun;Kang, Seung-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.595-610
    • /
    • 2013
  • Testing of order-restricted alternative hypothesis in $2{\times}k$ contingency tables can be applied to various fields of medicine, sociology, and business administration. Most testing methods have been developed based on a large sample theory. In the case of a small sample size or unbalanced sample size, the Type I error rate of the testing method (based on a large sample theory) is very different from the target point of 5%. In this paper, the exact testing method is introduced in regards to the testing of an order-restricted alternative hypothesis in categorical data (particularly if a small sample size or extreme unbalanced data). Power and exact p-value are calculated, respectively.

SYMMETRY REDUCTIONS, VARIABLE TRANSFORMATIONS AND EXACT SOLUTIONS TO THE SECOND-ORDER PDES

  • Liu, Hanze;Liu, Lei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.563-572
    • /
    • 2011
  • In this paper, the Lie symmetry analysis is performed on the three mixed second-order PDEs, which arise in fluid dynamics, nonlinear wave theory and plasma physics, etc. The symmetries and similarity reductions of the equations are obtained, and the exact solutions to the equations are investigated by the dynamical system and power series methods. Then, the exact solutions to the general types of PDEs are considered through a variable transformation. At last, the symmetry and integration method is employed for reducing the nonlinear ODEs.

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams (비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬)

  • Yoon Hee-Taek;Kim Moon-Young;Kim Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations (탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법)

  • Kim Nam-Il;Lee Jun-Seok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

AN EXACT LOGARITHMIC-EXPONENTIAL MULTIPLIER PENALTY FUNCTION

  • Lian, Shu-jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1477-1487
    • /
    • 2010
  • In this paper, we give a solving approach based on a logarithmic-exponential multiplier penalty function for the constrained minimization problem. It is proved exact in the sense that the local optimizers of a nonlinear problem are precisely the local optimizers of the logarithmic-exponential multiplier penalty problem.

ON THE ASYMPTOTIC EXACTNESS OF AN ERROR ESTIMATOR FOR THE LOWEST-ORDER RAVIART-THOMAS MIXED FINITE ELEMENT

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.293-304
    • /
    • 2013
  • In this paper we analyze an error estimator for the lowest-order triangular Raviart-Thomas mixed finite element which is based on solution of local problems for the error. This estimator was proposed in [Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385{395] and has a similar concept to that of Bank and Weiser. We show that it is asymptotically exact for the Poisson equation if the underlying triangulations are uniform and the exact solution is regular enough.

The Analysis and Application of the Parallel Coupled Line with Open Stub (개방 스터브를 갖는 평행결합선로의 해석과 응용)

  • Lee, Won-Kyun;Lee, Hong-Seob;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.153-160
    • /
    • 2007
  • In this paper, the exact analysis of the parallel coupled line with open stub is presented. This structure shows LPF characteristics with broad stopband and sharp skirt characteristics. We derived the exact Z-matrix expression of the structure. In order to show the validation of the expression we designed $3^{th}$ order Chebyshev LPF using the structure. The simulated data excellently agreed with the predicted values by the calculation using the derived expression.

  • PDF