
Kangweon-Kyungki Math. Jour. 13 (2005), No. 2, pp. 183–191

THE EXACT BERGMAN KERNEL AND THE

EXTREMAL PROBLEM

Moonja Jeong

Abstract. In this paper we find the Laurent series expansions rep-
resenting the reproducing kernels. Also we find the number of zeroes
of the exact Bergman kernel via parallel slit domain in order to relate
the exact Bergman kernel to an extremal problem.

1. Introduction

The reproducing kernels such as the Bergman kernel, exact Bergman
kernel, and the Szegő kernel associated to a bounded planar domain
carry plenty of information about the domain. For example, conformal
mappings from bounded planar domains onto canonical domains can be
expressed simply in terms of the above reproducing kernels(see [2], [4],
and [6]). Using the transformation formula of the Bergman kernel we
get the property of the proper holomorphic map between two smoothly
bounded domains(see [1]). Also if the kernel functions are algebraic,
then any proper holomorphic map from the given domain to the unit
disc is algebraic and vise versa(see [3]). So the issue is to find a do-
main whose reproducing kernels are algebraic. We proved in [5] that
every non-degenerate n-connected planar domain with n ≥ 2 is mapped
biholomorphically onto a domain Wa,b defined by

{
z ∈ C :

∣∣∣∣∣z +
n−1∑

k=1

ak

z − bk

∣∣∣∣∣ < 1

}
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with suitable complex vectors a = (a1, · · · , an−1) and b = (b1, · · · , bn−1).
Note that the Bergman kernel and the Szegő kernel kernel asociated with
Wa,b are algebraic.

Hence reproducing kernels have been useful tools in the study of con-
formal mappings and also of proper holomorphic mappings. These ker-
nels are closely related via the holomorphic functions obtained by har-
monic mesures. So we can expect that they have similar properties in
some respect.

Suita and Yamada [8] proved that the Bergman kernel B(z, w) asso-
ciated with an n-connected planar domain Ω has n− 1 zeroes in Ω as a
function of z whenever w ∈ Ω is sufficiently close to bΩ. If w ∈ Ω is not
close to bΩ, then the Bergman kernel may have fewer than n− 1 zeroes.

The Szegő kernel S(z, w) has n− 1 zeroes in Ω as a function of z for
fixed w ∈ Ω. Bell [2] proved that if w is close to one of the boundary
curve, the zeroes w1, w2, · · · , wn−1 become distinct simple zeroes. If w is
a point in bΩ, then S(z, w) is nonvanishing on Ω as a function of z and
has exactly n− 1 zeroes on bΩ.

In this paper, we find the Laurent series expansions representing the
above mentioned reproducing kernels. Also we find the number of zeroes
of the exact Bergman kernel via parallel slit domain in order to consider
an extremal problem.

2. Preliminaries

Let Ω be an n-connected, bounded, planar domain with C∞ boundary
components and let bΩ denote the boundary of Ω.

Let L2(Ω) denote the space of square integrable complex-valued func-
tions on Ω with the inner product given by < u, v >=

∫
Ω

uv̄dz and let
H2(Ω) denote the closed subspace of L2(Ω) consisting of holomorphic
functions on Ω.

The orthogonal projection B : L2(Ω) → H2(Ω) called the Bergman
projection is well-defined and represented by the Bergman kernel B(z, w)
on Ω× Ω via

Bϕ(z) =

∫

Ω

B(z, w)ϕ(w) dw

for ϕ in L2(Ω) and z in Ω. The Bergman kernel is holomorphic in z,

antiholomorphic in w, and B(z, w) = B(w, z).
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Let E2(Ω) denote the closed subspace of L2(Ω) consisting of holomor-
phic functions on Ω which are derivatives of single-valued functions.

The orthogonal projection E : L2(Ω) → E2(Ω) called the exact
Bergman projection is well-defined and represented by exact Bergman
kernel E(z, w) on Ω× Ω via

Eϕ(z) =

∫

Ω

E(z, w)ϕ(w) dw

for ϕ in L2(Ω) and z in Ω.
Let L2(bΩ) denote the space of square integrable complex-valued func-

tions on bΩ with the inner product given by < u, v >b=
∫

bΩ
uv̄ds where

ds denotes the arc length measure. Let H2(bΩ) denote the closed sub-
space of L2(bΩ) consisting of boundary values of holomorphic functions
on Ω.

The orthogonal projection S : L2(bΩ) → H2(bΩ) called the Szegő
projection is well-defined and represented by the Szegő kernel S(z, w)
on Ω× Ω via

Sϕ(z) =

∫

bΩ

S(z, w)ϕ(w) dsw

for ϕ in L2(bΩ) and z in Ω. Here we have identified Sϕ ∈ H2(bΩ) with
its unique holomorphic extension to Ω. The Szegő kernel is holomorphic
in z, antiholomorphic in w, and S(z, w) = S(w, z).

To see the relation among the reproducing kernels, first let {γj}n
j=1

denote the n boundary curves of Ω. Without loss of generality, assume
that γn is the outer boundary curve which bounds the unbounded com-
ponent of the complement of Ω in C. Let {ωj}n

j=1 denote the harmonic
measure functions associated to Ω. They are harmonic functions on Ω
which extend C∞ smoothly to Ω and ωj(γi) = δij. We can get a multi-
valued holomorphic function Wj by analytically continuing around Ω a
germ of ωj + iω∗j where ω∗j is a local harmonic conjugate for ωj. Then
W ′

j = 2∂ωj/∂z is also a holomorphic function. It is known that (see [2]
p.119)

K(z, w) = 4πS(z, w)2 +
n−1∑
j=1

λjW
′
j(z)

where λj are constants in z which depend on w.
Given a point a ∈ Ω, the Ahlfors map ga associated to the pair (Ω, a) is

a proper holomorphic mapping of Ω onto the unit disc. It is an n-to-one
mapping (counting multiplicity), it extends to be in C∞(Ω), and it maps
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each boundary curve γj one-to-one onto the unit circle. Furthermore,
ga(a) = 0, and ga is the unique function mapping Ω into the unit disc
maximizing |g′a(a)| with g′a(a) > 0. The Ahlfors map is related to the
Szegő kernel S(z, a) and the Garabedian kernel L(z, a) via

ga(z) =
S(z, a)

L(z, a)
.

Since ga is n-to-one, ga has n zeroes. The simple pole of L(z, a) at a
accounts for the simple zero of ga at a. The other n− 1 zeroes of ga are
given by n− 1 zeroes of S(z, a) in Ω− {a}.

3. The series expansions

Holomorphic functions in a multiply connected planar domain can
be expressed by the Laurent series. We will find the Laurent series
expansions of the reproducing kernels.

Example 3.1. Let Ω = {z ∈ C : ρ < |z| < 1}.
(1) We note that

< zn, zn >=

∫∫

Ω

znz̄ndxdy =
π

n + 1
(1− ρ2n+2).

Hence the set {un =
√

n+1zn√
π(1−ρ2n+2)

}, (n = · · · ,−1, 0, 1, · · · ) is the basis for

H2(Ω) orthonormalized by < un, um >= δnm. Therefore,

B(z, w) =
n=∞∑

n=−∞
un(z)un(w) =

1

π

n=∞∑
n=−∞

(n + 1)(zw̄)n

1− ρ2n+2
.

(2) We note that

< (zn)′, (zn)′ >=

∫∫

Ω

(zn)′(z̄n)′dxdy = πn(1− ρ2n).

Hence the set {un = zn√
πn(1−ρ2n)

}, (n = · · · ,−1, 1, · · · ) is the basis for

E2(Ω) orthonormalized by < u′n, u
′
m >= δnm. Therefore,

E(z, w) =
n=∞∑

n=−∞
u′n(z)un

′(w) =
1

π

n=∞∑
n=−∞

n(zw̄)n−1

1− ρ2n
.
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(3) We note that

< zn, zn >b=

∫∫

bΩ

znz̄ndxdy = 2π(1 + ρ2n+1).

Hence the set {un = zn√
2π(1+ρ2n+1)

}, (n = · · · ,−1, 0, 1, · · · ) is the basis

for H2(bΩ) rthonormalized by < un, um >b= δnm. Therefore,

S(z, w) =
n=∞∑

n=−∞
un(z)un(w) =

1

2π

n=∞∑
n=−∞

(zw̄)n

1 + ρ2n+1
.

4. The exact Bergman kernel and the extremal problem

Since holomorphic functions are derivatives of single-valued functions
in simply connected planar domains, H2(Ω) and E2(Ω) are the same and
hence the Bergman kernel and the exact Bergman kernel are the same
in simply connected planar domains. But in multiply connected planar
domain, they are not the same.

The parallel slit domain is a canonical domain for planar domains.
For any planar domain Ω there is a conformal map ϕ from Ω onto a
parallel slit domain mapping w ∈ Ω into the point at ∞. When parallel
slits form an angle θ with positive real axis, its representation is

ϕ(z) = ϕθ(z, w) =
1

z − w
+ a1,θ(z − w) + a2,θ(z − w)2 + · · ·

near z = w. By using two basic mappings ϕ0 and ϕπ/2, ϕθ is given by

ϕθ(z, w) = eiθ[cosθ ϕ0(z, w)− i sinθ ϕπ/2(z, w)]

(see [7] p.339).
For w in the unit disc {z ∈ C : |z| < 1}, the function f1(z) = 1−w̄z

z−w

maps the unit disc onto the outside of the unit disc mapping the point
z = w into the point at ∞. The mapping f2(z) = 1

1−|w|2 (z + 1/z) maps

the outside of the unit disc onto the extended complex plane except
the line segment [−( 1

1−|w|2 )2, (
1

1−|w|2 )2]. Hence the composition function

f2◦f1(z) maps the unit disc onto the extended complex plane except the
line segment [−( 1

1−|w|2 )2, (
1

1−|w|2 )2] and has a pole of order 1 at z = w

with residue 1.
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Similarly the mapping f3(z) = 1
1−|w|2 (z−1/z) maps the outside of the

unit disc onto the complex plane except the line segment

[−(
1

1− |w|2 )2i, (
1

1− |w|2 )2i].

Hence, the composition function f3◦f1(z) maps the unit disc onto the the
extended complex plane except the line segment [−( 1

1−|w|2 )2i, (
1

1−|w|2 )2i].
Thus we can represent a conformal map from the unit disc onto a

parallel slit domain.

Example 4.1. Let Ω = {z ∈ C : |z| < 1}. A conformal map of Ω
onto a parallel slit domain mapping w ∈ Ω into the point at ∞ has a
representation

ϕ0(z, w) =
1

1− |w|2 (
1− w̄z

z − w
+

z − w

1− w̄z
)

and

ϕπ/2(z, w) =
1

1− |w|2 (
1− w̄z

z − w
− z − w

1− w̄z
).

Hence

ϕθ(z, w) =
1

1− |w|2 (
1− w̄z

z − w
+ e2iθ z − w

1− w̄z
).

Let Ω be a planar domain with piecewise smooth boundary bΩ, and
both of the functions p and q have continuous first derivatives in Ω and
on bΩ. Then,

∂

∂z̄
(pq) = p

∂q

∂z̄
+ q

∂p

∂z̄
and it implies the following generalized Green’s formula.

Proposition 4.2. For a planar domain Ω with piecewise smooth
boundary bΩ, and for the functions p and q with continuous first deriva-
tives in Ω and on bΩ, we have the following formula∫∫

Ω

p
∂q

∂z̄
dx dy =

1

2i

∫

bΩ

pqdz −
∫∫

q
∂p

∂z̄
dx dy.

By using the above proposition, we have the following theorem for
the zeroes of the exact Bergman kernel.

Theorem 4.3. Let Ω be a bounded n-connected smooth planar do-
main. Then E(z, w) has 2(n− 1) zeroes in Ω for w ∈ Ω.
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Proof. Let

M(z, w) =
1

2
(ϕ0(z, w)− ϕπ/2(z, w))

and

N(z, w) =
1

2
(ϕ0(z, w) + ϕπ/2(z, w)).

Then M(z, w) is holomorphic in Ω and N(z, w) has a pole of order 1
with residue 1 at z = w.

Let f(z) be a single-valued holomorphic function in a domain Ω
and on its boundary bΩ. Then the generalized Green’s formula and
M ′(z, w) dz = N ′(z, w)dz in [7] p.362 imply that

∫∫

Ω

f ′(z)M ′(z, w)dxdy =

∫∫

Ω

f ′(z)M ′(z, w)dxdy

=

∫

bΩ

f(z)M ′(z, w)
1

2i
dz

=

∫

bΩ

f(z, w) N ′(z, w)
1

2i
dz

=

∫

bΩ

f(z)(− 1

2i
N ′(z, w))dz.

Since the residue of N(z, w) at z = w is 1, the principal part of
N ′(z, w) is −1

(z−w)2
. By using Cauchy’s Integral Formula, it holds that

∫

bΩ

f(z)(− 1

2i
N ′(z, w))dz = − 1

2i
(−2πif ′(w)).

Therefore, ∫∫

Ω

f ′(z)M ′(z, w)dxdy = πf ′(w).

and hence E(z, w) = 1
π
M ′(z, w). By using the tangential derivatives

of ϕ0 and ϕπ/2 as well as the argument principle, we get M ′(z, w) has
2(n− 1) zeroes in Ω for w ∈ Ω and so does E(z, w).

By using the above theorem, we get

Theorem 4.4. Let Ω be an n-connected planar domain and let

Fw(z) =
M ′(z, w)

N ′(z, w)
.

Then Fw is a proper 2n-to-one map from Ω onto the unit disc with
Fw(w) = F ′

w(w) = 0 and F ′′
w(w) = 2E(z, w).
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Proof. Let

Fw(z) =
M ′(z, w)

N ′(z, w)
=

ϕ′0(z,w)

ϕ′
π/2

− 1

ϕ′0(z,w)

ϕ′
π/2

+ 1
.

It is the composition of

f1(z) =
ϕ′0(z, w)

ϕ′π/2(z, w)

and

f2(z) =
z − 1

z + 1
.

We know that the univalent holomorphic function ϕθ(z, w) has the
expression

ϕθ(z, w) = eiθ[cosθ ϕ0(z, w)− i sinθ ϕπ/2(z, w)]

and ϕ′θ(z, w) can’t vanish in Ω. Hence, f1(z) can’t be i tanθ and f1(z)
maps Ω onto the right half plane with the Ref1(z) = 0 on the boundary
of Ω. By the property of f1 and f2, Fw is a proper holomorphic map from
Ω onto the unit disc. Moreover Fw has 2n zeroes in Ω since N ′(z, w) has
no zero in Ω with a pole of order 2 at z = w and M ′(z, w) has 2(n− 1)
zeroes in Ω with no pole. Therefore Fw is a proper 2n-to-one map from
Ω onto the unit disc.

Since N ′(z, w) = − 1
(z−w)2

+hw(z) where hw is a holomorphic function

in Ω,

Fw(z) =
M ′(z, w)

− 1
(z−w)2

+ hw(z)
.

Therefore Fw(w) = F ′
w(w) = 0 and F ′′(z) = 2M ′(w, w) = 2πE(w,w)

We conjecture that the above theorem can be used to solve an ex-
tremal problem. In this sense, the above approach to find the zeroes of
the exact Bergman kernel is useful.
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