• Title/Summary/Keyword: evolutionary neural networks

Search Result 85, Processing Time 0.043 seconds

A Study on Trajectory Control of Robot Manipulator using Neural Network and Evolutionary Algorithm (신경망과 진화 알고리즘을 이용한 로봇 매니퓰레이터의 궤적 제어에 관한 연구)

  • Kim, Hae-Jin;Lim, Jung-Eun;Lee, Young-Seok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1960-1961
    • /
    • 2006
  • In this paper, The trajectory control of robot manipulator is proposed. It divides by trajectory planning and tracking control. A trajectory planning and tracking control of robot manipulator is used to the neural network and evolutionary algorithm. The trajectory planning provides not only the optimal trajectory for a given cost function through evolutionary algorithm but also the configurations of the robot manipulator along the trajectory by considering the robot dynamics. The computed torque method (C.T.M) using the model of the robot manipulators is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. The Radial Basis Function Networks(RBFN) is used not to learn the inverse dynamic model but to compensate the uncertainties of robot manipulator. The computer simulations show the effectiveness of the proposed method.

  • PDF

Evolutionary Neural Network based on DNA coding method for Time series prediction (시계열 예측을 위한 DNA코딩 기반의 신경망 진화)

  • 이기열;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.315-323
    • /
    • 2000
  • In this paper, we propose a method of constructing neural networks using bio-inpired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants, Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting nechanism. The DNA coding method has no limitation in expressing the produlation the rule of L-system. Evolutionary algotithms motivated by Darwinaian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it one step ahead prediction of Mackey-Glass time series, Sunspot data and KOSPI data.

  • PDF

Evolutionary Learning-Rate Selection for BPNN with Window Control Scheme

  • Hoon, Jung-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.301-308
    • /
    • 1997
  • The learning speed of the neural networks, the most important factor in applying to real problems, greatly depends on the learning rate of the networks, Three approaches-empirical, deterministic, and stochastic ones-have been proposed to date. We proposed a new learning-rate selection algorithm using an evolutionary programming search scheme. Even though the performance of our method showed better than those of the other methods, it was found that taking much time for selecting evolutionary learning rates made the performance of our method degrade. This was caused by using static intervals (called static windows) in order to update learning rates. Out algorithm with static windows updated the learning rates showed good performance or didn't update the learning rates even though previously updated learning rates shoved bad performance. This paper introduce a window control scheme to avoid such problems. With the window control scheme, our algorithm try to update the learning ra es only when the learning performance is continuously bad during a specified interval. If previously selected learning rates show good performance, new algorithm will not update the learning rates. This diminish the updating time of learning rates greatly. As a result, our algorithm with the window control scheme show better performance than that with static windows. In this paper, we will describe the previous and new algorithm and experimental results.

  • PDF

A Study on the Stabilization Control of IP System Using Evolving Neural Network (진화 신경망을 이용한 도립진자 시스템의 안정화 제어기에 관한 연구)

  • 박영식;이준탁;심영진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.383-394
    • /
    • 2001
  • The stabilization control of inverted pendulum (IP) system is difficult because of its nonlinearity and structural unstability. In this paper, an Evolving Neural Network Controller (ENNC) without Error Back Propagation (EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC)are compared with the one of conventional optimal controller and the conventional evolving neural network controller (CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

A Study on Stabilization Control of Inverted Pendulum System using Evolving Neural Network Controller (진화 신경회로망 제어기를 이용한 도립진자 시스템의 안정화 제어에 관한 연구)

  • 김민성;정종원;성상규;박현철;심영진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.243-248
    • /
    • 2001
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

A study on the structure evolution of neural networks using genetic algorithms (유전자 알고리즘을 이용한 신경회로망의 구조 진화에 관한 연구)

  • 김대준;이상환;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.223-226
    • /
    • 1997
  • Usually, the Evolutionary Algorithms(EAs) are considered more efficient for optimal, system design because EAs can provide higher opportunity for obtaining the global optimal solution. This paper presents a mechanism of co-evolution consists of the two genetic algorithms(GAs). This mechanism includes host populations and parasite populations. These two populations are closely related to each other, and the parasite populations plays an important role of searching for useful schema in host populations. Host population represented by feedforward neural network and the result of co-evolution we will find the optimal structure of the neural network. We used the genetic algorithm that search the structure of the feedforward neural network, and evolution strategies which train the weight of neuron, and optimize the net structure. The validity and effectiveness of the proposed method is exemplified on the stabilization and position control of the inverted-pendulum system.

  • PDF