• 제목/요약/키워드: evolution optimization

검색결과 401건 처리시간 0.022초

The Optimization of Truss Structures with Genetic Algorithms

  • Wu, Houxiao;Luan, Xiaodong;Mu, Zaigen
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.117-122
    • /
    • 2005
  • This paper investigated the optimum design of truss structures based on Genetic Algorithms (GA's). With GA's characteristic of running side by side, the overall optimization and feasible operation, the optimum design model of truss structures was established. Elite models were used to assure that the best units of the previous generation had access to the evolution of current generation. Using of non-uniformity mutation brought the obvious mutation at earlier stage and stable mutation in the later stage; this benefited the convergence of units to the best result. In addition, to avoid GA's drawback of converging to local optimization easily, by the limit value of each variable was changed respectively and the genetic operation was performed two times, so the program could work more efficiently and obtained more precise results. Finally, by simulating evolution process of nature biology of a kind self-organize, self-organize, artificial intelligence, this paper established continuous structural optimization model for ten bars cantilever truss, and obtained satisfactory result of optimum design. This paper further explained that structural optimization is practicable with GA's, and provided the theoretic basis for the GA's optimum design of structural engineering.

  • PDF

신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화 (Optimization of Design Variables of a Train Suspension Using Neural Network Model)

  • 김영국;박찬경;황희수;박태원
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

Performance Comparison of GA, DE, PSO and SA Approaches in Enhancement of Total Transfer Capability using FACTS Devices

  • Chandrasekar, K.;Ramana, N.V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2012
  • In this paper the performance of meta-heuristics algorithms such as GA (Genetic Algorithm), DE (Differential Evolution), PSO (Particle Swarm Optimization) and SA (Simulated Annealing) for the problem of TTC enhancement using FACTS devices are compared. In addition to that in the assessment procedure of TTC two novel techniques are proposed. First the optimization algorithm which is used for TTC enhancement is simultaneously used for assessment of TTC. Second the power flow is done using Broyden - Shamanski method with Sherman - Morrison formula (BSS). The proposed approach is tested on WSCC 9 bus, IEEE 118 bus test systems and the results are compared with the conventional Repeated Power Flow (RPF) using Newton Raphson (NR) method which indicates that the proposed method provides better TTC enhancement and computational efficacy than the conventional procedure.

Design and Field Test of an Optimal Power Control Algorithm for Base Stations in Long Term Evolution Networks

  • Zeng, Yuan;Xu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5328-5346
    • /
    • 2016
  • An optimal power control algorithm based on convex optimization is proposed for base stations in long term evolution networks. An objective function was formulated to maximize the proportional fairness of the networks. The optimal value of the objective function was obtained using convex optimization and distributed methods based on the path loss model between the base station and users. Field tests on live networks were conducted to evaluate the performance of the proposed algorithm. The experimental results verified that, in a multi-cell multi-user scenario, the proposed algorithm increases system throughputs, proportional fairness, and energy efficiency by 9, 1.31 and 20.2 %, respectively, compared to the conventional fixed power allocation method.

Comparative Study on the Optimization Methods for a Motor Drive of Artificial Hearts

  • Pohlmann, Andre;LeBmann, Marc;Hameyer, Kay
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.193-199
    • /
    • 2012
  • Worldwide cardiovascular diseases are the major cause of death. Aside from heart transplants, which are limited due to the availability of human donor hearts, artificial hearts are the only therapy available for terminal heart diseases. For various reasons, a total implantable artificial heart is desirable. But the limited space in the human thorax sets rigorous restrictions on the weight and dimensions of the device. Nevertheless, the appropriate functionality of the artificial heart must be ensured and blood damage must be prevented. These requirements set further restrictions to the drive of this device. In the this paper, two optimization methods, namely, the manual parameter variation and Differential Evolution algorithm, are presented and applied to match the specifications of an artificial heart.

A New Constraint Handling Method for Economic Dispatch

  • Li, Xueping;Xiao, Canwei;Lu, Zhigang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1099-1109
    • /
    • 2018
  • For practical consideration, economic dispatch (ED) problems in power system have non-smooth cost functions with equality and inequality constraints that makes the problems complex constrained nonlinear optimization problems. This paper proposes a new constraint handling method for equality and inequality constraints which is employed to solve ED problems, where the incremental rate is employed to enhance the modification process. In order to prove the applicability of the proposed method, the study cases are tested based on the classical particle swarm optimization (PSO) and differential evolution (DE) algorithm. The proposed method is evaluated for ED problems using six different test systems: 6-, 15-, 20-, 38-, 110- and 140-generators system. Simulation results show that it can always find the satisfactory solutions while satisfying the constraints.

시뮬레이션을 이용한 철도 정비 시설의 최적 설계 방법 (The Optimal Design Method of the Train Repair Facility based on the Simulation)

  • 엄인섭;천현재;이홍철
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.306-312
    • /
    • 2007
  • This paper presents the optimal design method of the train repair facility based on the simulation analysis. The train is divided into the power car, motorized car and passenger car for the simulation process analysis and train repair facility is composed of each subsystems such as a blast, dry and wash workshop. In simulation analysis, we consider the critical (dependent) factors and design (independent) factors for the optimal design. Therefore, a simulation optimization uses Evolution Strategy (ES) in order to find the optimal design factors. Experimental results indicate that simulation design factors are sufficient to satisfy the conditions of dependent variables. The proposed analysis method demonstrates that simulation design factors determined by the simulation optimization are appropriate for real design factors in a real situation and the accuracy and confidence for the simulation results are increased.

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.

네트워크형 가로망의 교통신호제어 최적화 모형개발 (Development of Optimization Model for Traffic Signal Timing in Grid Networks)

  • 김영찬;유충식
    • 대한교통학회지
    • /
    • 제18권1호
    • /
    • pp.87-97
    • /
    • 2000
  • Signal optimization model is divided bandwidth-maximizing model and delay-minimizing model. Bandwidth-maximizing model express model formulation as MILP(Mixed Integer Linear Programming) and delay-minimizing model like TRANSYT-7F use "hill climbing" a1gorithm to optimize signal times. This study Proposed optimization model using genetic algorithm one of evolution algorithm breaking from existing optimization model This Proposed model were tested by several scenarios and evaluated through NETSIM with TRANSYT-7F\`s outputs. The result showed capability that can obtain superior solution.

  • PDF

A Study on Multi-objective Optimal Power Flow under Contingency using Differential Evolution

  • Mahdad, Belkacem;Srairi, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.53-63
    • /
    • 2013
  • To guide the decision making of the expert engineer specialized in power system operation and control; the practical OPF solution should take in consideration the critical situation due to severe loading conditions and fault in power system. Differential Evolution (DE) is one of the best Evolutionary Algorithms (EA) to solve real valued optimization problems. This paper presents simple Differential Evolution (DE) Optimization algorithm to solving multi objective optimal power flow (OPF) in the power system with shunt FACTS devices considering voltage deviation, power losses, and power flow branch. The proposed approach is examined and tested on the standard IEEE-30Bus power system test with different objective functions at critical situations. In addition, the non smooth cost function due to the effect of valve point has been considered within the second practical network test (13 generating units). The simulation results are compared with those by the other recent techniques. From the different case studies, it is observed that the results demonstrate the potential of the proposed approach and show clearly its effectiveness to solve practical OPF under contingent operation states.