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Abstract – To guide the decision making of the expert engineer specialized in power system o
peration and control; the practical OPF solution should take in consideration the critical situati
on due to severe loading conditions and fault in power system. Differential Evolution (DE) is 
one of the best Evolutionary Algorithms (EA) to solve real valued optimization problems. This 
paper presents simple Differential Evolution (DE) Optimization algorithm to solving multi obje
ctive optimal power flow (OPF) in the power system with shunt FACTS devices considering v
oltage deviation, power losses, and power flow branch. The proposed approach is examined an
d tested on the standard IEEE-30Bus power system test with different objective functions at cr
itical situations. In addition, the non smooth cost function due to the effect of valve point has 
been considered within the second practical network test (13 generating units). The simulation 
results are compared with those by the other recent techniques. From the different case studies, 
it is observed that the results demonstrate the potential of the proposed approach and show cl
early its effectiveness to solve practical OPF under contingent operation states. 
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1. Introduction 
 
The optimal power flow (OPF) problem is one of the 

important tools in operation and control of large modern 

power systems based FACTS technology and Renewable 

energy. The main objective of a practical OPF strategy is to 

determine the optimal operating state of a power system by 

optimizing a particular objective while satisfying certain 

specified physical and security constraints. In its most 

general formulation, the optimal power flow (OPF) is a 

nonlinear, non-convex, large-scale, static optimization 

problem with both continuous and discrete control 

variables. It becomes even more complex when more than 

one objective function is considered with various types of 

practical generators constraints (prohibited zones, valve 

point effects and ramp rate limits), this type of problem 

well known as multi objective OPF problem. Over the last 

several years many mathematical optimization techniques 

have been applied to solve the OPF problem such as; 

linear programming (LP), nonlinear programming (NLP), 

quadratic programming (QP), and interior point methods 

[2-5]. All these techniques rely on the initial condition and 

convexity to find the global optimum; the methods based 

on these assumptions do not guarantee to find the global 

optimum solution when considering the practical 

generators constraints (Prohibited zones, valve point 

effects and ramp rate limits), authors in [1] provide a 

valuable introduction and surveys the classical opti- 

mization techniques. To overcome the drawbacks of the 

mathematical methods related to the initial condition and to 

the form of the objective function, a new category of global 

optimization techniques is developed, this category based 

on stochastic and heuristic aspect includes; Genetic 

algorithm (GA) [6, 7], Tabu search (TS) [8], Simulated 

annealing (SA) [9], Evolutionary programming (EP) [10], 

Particle swarm optimization (PSO) [11], Differential 

evolution (DE) [12], Harmony search (HS) [13], Artificial 

bee colony (ABC) [14], Biogeography based optimization 

method (BBO) [15, 16], A modified Artificial bee 

(MABCA) [17], Shuffled frog leaping algorithm (SFL) 

[18], and Gravitational search algorithm (GSA) [19]. All 

these methods applied with success to solving various 

problems related to power system operation and control. 

Authors in [20] provide a significant and valuable 

introduction and surveys the non-deterministic and hybrid 

optimization methods. 

Differential Evolution (DE) is a population-based, direct 

stochastic search algorithm and one of the most prominent 

new generation EAs, proposed by Storn and Price [21], for 

optimization problems over a continuous domain. The 

main advantages of DE are: simple to program, few control 

parameters, high convergence characteristics. DE has been 

applied to several engineering problems in different areas. 

In power system area, DE has received great attention to 

solving the multi objective optimal power flow considering 

the integration of multi FACTS devices in a practical 

electrical network. This paper presents a differential 

evolution (DE) algorithm adapted for the solution of the 

multi objective optimal power flow under contingent 

operation states considering multi shunt FACTS devices.  
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2. Mathematical Formulation of Multi Objective 

Optimal Power Flow Problem 
 

 

The OPF problem is considered as a general mini- 

mization problem with constraints, the aim of OPF is to 

minimize the one or more objective function while 

satisfying all the constraints. Fig. 1 shows the strategy of 

the multi objective OPF. In multi objective OPF we have 

two or more conflicting objective functions to be optimized 

simultaneously. As a consequence, there is no unique 

solution to multi objective optimization problem, but we 

aim to find all the trade-off solutions available, called 

pareto-optimal set. The multi objective OPF problem can 

be formulated as: 

 

Minimize ( , ), 1,.....,i objJ x u i N=  (1) 

Subject to: 0),( =uxg   (2) 
0),( ≤uxh  (3) 

min maxx x x≤ ≤  (4) 

min maxu u u≤ ≤  (5) 

 

Where iJ  is the ith objective function, objN  is the 

number of objectives, g  and h are respectively the set of 

equality and inequality constraints. The vector of state and 

control variables are denoted by x and u respectively. In 

general, the state vector includes bus voltage angles δ , 

load bus voltage magnitudes LV , slack bus real power 

generation ,g slackP  and generator reactive power gQ . 
 

 ,, , ,
T

L g slack gx V P Qδ =    (6) 

 

The control variable vector consists of real power 

generation gP , generator terminal voltage gV , shunt 

capacitors/reactors shB , shunt dynamic compensators 

(SVC) svcB  and transformers tap ratio t .  

 

 , , , ,
T

g g sh svcu P V t B B =    (7) 

 

 

Fig. 1. Multi objective optimal power flow (OPF) strategy. 

In this article two type of objective function based fuel 

cost are considered.  

 

2.1 Smooth cost function using quadratic form 

 

For optimal active power dispatch, the objective 

function f  is the total generation cost expressed in a 

simple form as follows: 

 

 Min ( )2

1

NG

i i gi i gi

i

f a b P c P

=

= + +∑   (8) 

 
Where; NG  is the number of thermal units, giP  is the 

active power generation at unit i and ia , ib  and ic  are 

the cost coefficients of the ith  generator. 

 

●  Non-smooth Cost Function with Valve-Point Loading 

Effects 

 

The valve-point loading effect is taken in consideration 

by adding a sine component to the cost of the generating 

units. Typically, the fuel cost function of the generating 

units with valve-point loadings is represented as follows 

[22]:  

 

 ( ) ( )( )2 min

1

sin

NG

i i gi i gi i i gi gi

i

f a b P c P d e P P

=

= + + + −∑  (9) 

 

id  and ie are the cost coefficients of the unit with 

valve-point loading effects. The input-output performance 

curve for a typical thermal unit can be represented as 

shown in Fig. 2. 

 

Fig. 2. Input-Output curve under valve-point loading effects. 

 

2.2 Minimization of power loss 

 

The objective function here is to minimize the active 

power loss ( lossP ) in the transmission lines that can be 

expressed through the following equation: 
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 ( )2 2
1

1

2 cos
lN

loss k k i j k i j ij

k

J P g t V V t VV δ
=

 = = + −  ∑  (10) 

 

Where, l
N is the number of transmission lines; kg  is the 

conductance of branch k between buses i and j; kt  the tap 

ration of transformer k; iV  is the voltage magnitude at bus 

i; ijδ  the voltage angle difference between buses i and j. 

 

2.3 Minimization of voltage deviation 

 

One of the important indices of power system security is 

the bus voltage magnitude. The voltage magnitude 

deviation from the desired value at each load bus must be 

as small as possible. The deviation of voltage is given as 

follows:  

 

 2

1

PQN

des
k k

k

J V V V

=

= ∆ = −∑   (11) 

 

where, PQN  is the number of load buses and des
kV  is the 

desired or target value of the voltage magnitude at load 

bus k. 

 

2.4 Minimization of fuel cost and voltage deviation 

 

In this case in order to minimize the fuel cost and 

improve the voltage profile, the following multi objective 

function is proposed and expressed as follow: 

 

 3

1

.

NG

i vi i ref

i i NL

J f V Vω
= ∈

= + −∑ ∑  (12) 

 

Where refV  is the reference (desired) voltage of the 

buses, which are taken as 1 p.u; viω  is a weight factor of 

the ith  unit. As well known voltage deviation largely 

depends on system loads, viω  is given by the following 

equation: 

 

 . i
vi

Pd
f

PD
ω =  (13) 

 

Where; PD  is the total active power demand, iPd  is 

the active power demand of the ith bus.  

 

2.5 Minimization of fuel cost and total overloading  
 
Security OPF solution should take in consideration the 

critical situation due to severe loading conditions and fault 

(contingency situation) in power system, so it is important 

to maintain the power flow in all lines within the 

admissible values (thermal limits). 

 

Fig. 3. Contingency evaluation using branch loading indice. 

 

The proposed objective function is formulated as 

follows: 
 

 4

1

.

NG

i br

i

J f TOVLω
=

= +∑  (14) 

 
1

1
.

Nbr

ij

k

TOVL OVL
Nbr

=

 
=  
 
 

∑  (15) 

 max

ij

ij

ij

P
OVL

P
=  (16) 

 
Where, TOVL is the total normalized overloading 

index, ijOVL  is the overloading at branch i-j, Nbr is the 

number of branch brω  is a weighting factor expressed as 

follows.  

 br
loss

f

PD P
ω =

+
 (17) 

 

2.6 Equality constraints 
 
The equality constraints ( )g x are the real and reactive 

power balance equations, expressed as follows: 
 

 ( )
1

cos sin 0

Nb

gi di i j ij ij ij ij

j

P P V V g bδ δ
=

− − + =∑  (18) 

 
and; 

 

 ( )
1

sin cos 0

Nb

gi di i j ij ij ij ij

j

Q Q V V g bδ δ
=

− − − =∑  (19) 

 
Where Nb  is the number of buses, giP , giQ  are the 

active and the reactive power generation at bus i; diP , diQ  

are the real and the reactive power demands at bus i ; iV , 

jV , the voltage magnitude at bus i , j respectively; ijδ  is 

the voltage angle difference between buses i and j, ijg  and 

ijb  are the real and imaginary part of the admittance.  
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2.7 Inequality constraints 
 

The inequality constraints ( , )h x u reflect the security 

limits that can be expressed as follows:  

 

●Upper and lower limits on the active power generations: 
 

 
min max
gi gi giP P P≤ ≤  (20) 

 

●Upper and lower limits on the reactive power generations: 
 

 
min max
gi gi giQ Q Q≤ ≤  (21) 

 

●Upper and lower limits on the tap ratio (t).  
 

 
min max
ij ij ijt t t≤ ≤  (22) 

 

●Upper and lower limits on the shifting (α ) of variable 

transformers: 
 

 
min max
ij ij ijα α α≤ ≤  (23) 

 

●Upper limit on the power flow ( ijS ) of branch i-j. 
 

 
max

ij ijS S≤  (24) 

 

●Upper and lower limits in the bus voltage magnitude: 
 

 min max
i i iV V V≤ ≤  (25) 

 

●Upper and lower limits in the Shunt FACTS parameters 
 

 min max
FACTSX X X≤ ≤  (26) 

 
 

3. Overview of Differential Evolution Technique 

 

Differential evolution (DE) developed by Price and 

Storn [21] is a simple population based stochastic heuristic 

aspect. DE has proven to be promising candidate to solve 

real valued optimization problem. The key idea behind 

differential evolution approach is a new mechanism 

introduced for generating trial parameter vectors. In each 

step DE mutates vectors by adding weighted, random 

vector differentials to them. If the fitness function of the 

trial vector is better than that of the target, the target vector 

is replaced by trial vector in the next generation [24].  

 

3.1 Differential evolution mechanism search 

 

Based on the mechanism search of DE method shown in 

Fig.4, a brief description of different steps of the standard 

DE algorithm is given below [21]: 

 
Fig. 4. Mechanism search of DE method 

 

 

Step 1: Initialization 

The population is initialized by randomly generating 

individuals within the specified constraints:  

 

 
( ) ( ) ( )( )( ) [0,1]
L U LG

i ij ij ijX x rand x x= + ∗ −   (27) 

 

Where: 
[0,1]rand  : denotes a uniformly distributed random 

value within [0, 1].  

( )L

ijx  and 
( )U

ijx  are lower and upper boundaries of the  

parameters ijx  respectively for 1,2,..., .j n=   

 

Step 2: Mutation 

The role of mutation operation (or differential operation) 

is to avoid search stagnation by introducing new 

parameters into the population according to the following 

equation: 
 

 
( ) ( ) ( )( )( 1)
3 2 1

G G GG
i mr r rv x f x x+ = + ∗ −  (28) 

 
Three vectors ( )

3

G

rx , ( )
2

G

rx and ( )
1

G

rx are randomly selected 

from the population and 1 2 3r r r≠ ≠ , then the vector 

difference between them is established. 0mf ≻  is a real 

parameter, called scaling factor, and it is usually taken 

from the range [0, 2], many schemes of creation of a 

candidature are possible, details on different schemes can 

be found in [20-24]. 

 

Step 3: Crossover  

The crossover operator creates the trial vectors, which 

are used in the selection process. A trial vector is a 

combination of a mutant vector and a parent vector which 

is formed based on probability distributions. For each 

mutate vector, ( 1)G
iv + , an index ( ) { }1,2,...,rnbr i n∈  is 
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randomly chosen using a uniform distribution, and a trail 

vector, ( 1) ( 1) ( 1)( 1)
1 2 2, ,...,

T

G G GG
i i i iu u u u+ + ++  =  

 is generated 

according to the following equation:  

 

 
[ ]( ) ( )( )( 1)

( 1)

( )

0,1G
ijG

ij G
ij

v if rand CR or j rnbr i
u

x otherwise

+
+

 ≤ =
= 


 (29) 

 

Step 4: Selection  

The selection operator chooses the vectors that are going 

to compose the population in the next generation. These 

vectors are selected from the current population and the 

trial population. Each individual of the trial population is 

compared with its counterpart in the current population 

based on the following condition.  
 

 
( ) ( )( )( 1) ( 1) ( )

( 1)

( )

G G G
i i iG

i
G

i

u if f u f x
x

x otherwise

+ +
+




= 


≺

  (30) 

 

Where f is the fitness function. 

 

 

4. Shunt Facts Modelling 

 

4.1 Static VAR compensator (SVC) 

 

The Static VAr Compensator (SVC) [23] is a shunt 

connected VAr generator or absorber whose output is 

adjusted dynamically to exchange capacitive or inductive 

current so as to maintain bus voltage at a desired value. It 

includes separate equipment for leading and lagging VArs. 

The basic steady state model shown in Fig. 5 is used in this 

study to incorporate the SVC on the power flow problem. 

This model is based on representing the SVC Controller as 

variable susceptance or firing angle control. 

SVC SVCI jB V=  (31) 

( ) ( )1
2 sin 2 ,

1
, ,

C
SVC C TCR L

C L

L C

X
B B B X

X X

X L X
C

π α α
π

ω
ω

  = − = − − +     

= = 

 

  (32) 
 
Where, , , , ,SVC L CB X X Vα are the shunt susceptance, 

firing angle, inductive reactance, capacitive reactance of 

the SVC controller, and the bus voltage magnitude to 

which the SVC is connected, respectively. 

The exchange reactive power SVC
iQ  with the bus i can 

be expressed as,  
 

 2.SVC SVC
i i iQ B V=  (33) 

 

 

5. Numerical Results and Analysis 

 
The proposed algorithm is developed in the Matlab 

programming language (6.5 version) using Microsoft 

Windows XP. All the programs were run on 2.6 GHz 

Pentium IV processor with 500MB of random access 

memory. The proposed approach has been tested on two 

test network; IEEE 30-Bus with smooth cost function 

considering all security constraints under contingency 

situations, and to the 13 generating units considering valve 

point effects. 

 

5.1 Educational simulator based matlab: GLOBOPF 

package 

 

The proposed simulator called global OPF (GLOBOPF) 

has been developed under the basic graphic user interface 

(GUI) from MATLAB program. In this first version (1.01) 

the user can choose the method for optimization (GA, PSO, 

DE, Fuzzy-GA, FPSO,), edit, modify and save the related 

 

Fig. 5. SVC Steady-state circuit representation based power
flow. 

 

 

Fig. 6. Frame of the DE parameters adjustment based 
GLOBOPF Package. 
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parameters. It is important to note that adjusting parameters 

of these optimization methods is an important task to 

achieve better results. Fig. 6 shows the basic frame of the 

DE parameters.  

 

5.2 DE parameters: 
 
Initially, several runs are done with different values of 

DE parameters such as: mutation constant fm , crossover 

constant CR , size population NP , and maximum number 

of generations maxG which is used in this study as 

convergence criteria. The following values are selected 

based on the size of the power system test and the loading 

condition (at normal or under contingency). 
0.4 0.95fm = − ; 0.5 0.8CR = − ; 10 30NP = − ; 

max 250G =  

5.3 Test system 1: Smooth cost function considering 

all security constraints under contingency situation 

 

The first test system has 6 generating units; 41 branch 

system, the system data taken from [22]. It has a total of 24 

control variables described as follows: five units active 

power outputs, six generator-bus voltage magnitudes, four 

transformer-tap settings, nine bus shunt FACTS controllers 

(SVC). Fig. 7 shows the structure of the vector control to 

be optimized. The single line diagram of the modified 

IEEE 30-Bus electrical network is shown in Fig. 8.  

 

5.4 Case 1: Single objective function: 
 
In this case, the problem is solved as single objective 

optimization, three objective functions are treated, fuel cost, 

power transmission losses and voltage deviation. Table 1 

shows the control settings and objective function values for 

base case (without any optimization function) and with 

single objective functions considering multi shunt FACTS 

devices.  

 

Table 1 Control variables optimized using single objective 
function: 

Proposed Approach 
Case 1: Single objective function 

Control 
Variable 

Base 
case 

OF*=Cost/with and 
without SVC 

OF=Plos
s 

OF=VD 

PG1 99.578 177.780 57.450 101.040 

PG2 80.00 48.6100 79.500 79.9400 

PG5 50.00 20.7800 48.500 50.0000 

PG8 20.00 20.9752 34.500 35.0000 

PG11 20.00 12.0000 28.500 10.5100 

PG13 20.00 12.0000 38.500 12.5000 

VG1 1.0 1.09890 1.0560 1.04060 

VG2 1.0 1.07990 1.0543 1.03190 

VG5 1.0 1.05190 1.0366 1.03190 

VG8 1.0 1.06090 1.0447 0.99370 

VG11 1.0 1.09390 1.1000 1.00530 

VG13 1.0 1.08690 1.0656 1.02510 

T6-9 1.0 1.07110 1.0765 1.0490 

T6-10 1.0 0.91810 0.9226 0.9000 

T4-12 1.0 1.00990 1.0148 0.9890 

T28-27 1.0 0.98950 0.9943 0.9690 

svcQ (10) 0 0 3.7500 0.0500 4.6250 

svcQ (12) 0 0 3.7500 0.0500 4.6250 

svcQ (15) 0 0 2.2500 0.0300 2.7750 

svcQ (17) 0 0 3.7500 0.0500 4.6250 

svcQ (20) 0 0 3.6000 0.0480 4.4400 

svcQ (21) 0 0 4.6125 0.0515 5.6888 

svcQ (23) 0 0 2.8800 0.0384 3.5520 

svcQ (24) 0 0 3.4350 0.0458 4.2365 

svcQ (29) 0 0 3.7500 0.0250 4.6250 

FC ($/h) 902.5583 800.1072 799.3070 952.9361 898.0054 

Loss(MW) 6.089 8.987 8.741 3.547 5.587 

DV (p.u) 1.1767 0.9064  1.3175 0.4103 0.1516 

* OF: Objective function 

 

Fig. 7. Vector control structure based DE for optimal power 
flow. 

 

 

Fig. 8. Single line diagram for the modified IEEE 30-Bus 

test system considering Shunt FACTS devices. 
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Fig. 9. Convergence characteristic: Case1: Minimize fuel 
cost with and without shunt FACTS.  
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Fig. 10. Convergence characteristic: Case1: Minimize power 
loss considering multi shunt FACTS. 

 

Fig. 9 shows the convergence of the best total fuel cost 

with and without shunt FACTS devices; Fig. 10 shows the 

convergence characteristic of the best power loss considering 

multi shunt FACTS controllers. The proposed approach can 

reach to the optimum solution at a reduced number of 

iteration, less than 25 iterations for fuel cost minimization 

and less than 40 iterations for power loss minimization. All 

reported results for the DE in this paper are feasible 

solutions satisfying the OPF security constraints (generator 

reactive power limits, power flow in branches and voltage 

limits). 

 

5.5 Case 2: Multi objective function 

 
● Minimization of fuel cost and voltage deviation  

 

In this case (case 2.1), fuel cost optimized in coordination 

with voltage deviation, this case is very important, it allows 

to the expert to take an efficient compromise decision. 

Table 2. Control variables optimized using multi objective 
function: Case 2.1: Fuel cost and voltage deviation. 

Case 2: Multi objective function 
Cost & voltage deviation 

Control 
Variables 

Base case OF*=Cost+VD 

PG1 99.578 179.130 

PG2 80.00 47.7460 

PG5 50.00 21.0368 

PG8 20.00 21.6138 

PG11 20.00 11.9414 

PG13 20.00 11.7360 

VG1 1.0 1.0420 

VG2 1.0 1.0299 

VG5 1.0 1.0041 

VG8 1.0 1.0129 

VG11 1.0 1.0880 

VG13 1.0 1.0545 

T6-9 1.0 1.0775 

T6-10 1.0 0.9235 

T4-12 1.0 1.0159 

T28-27 1.0 0.9953 

svcQ
(10) 0 0 3.7500 

svcQ
(12) 0 0 3.7500 

svcQ
(15) 0 0 2.2500 

svcQ
(17) 0 0 3.7500 

svcQ
(20) 0 0 3.6000 

svcQ
(21) 0 0 3.8625 

svcQ
(23) 0 0 2.8800 

svcQ
(24) 0 0 3.4350 

svcQ
(29) 0 

W
ith
o
u
t S
V
C
 C
o
n
tro
llers 

0 

W
ith
 S
V
C
 C
o
n
tro
llers 

1.8750 

FC ($/h) 902.5583 803.5845  802.9156 

Loss (MW) 6.089 10.0077  9.8040 

DV (p.u) 1.1767 0.5603  0.2592 

 

The control variables, optimal power generation, fuel 

cost, total power loss and voltage deviation of the overall 

system are shown in Table 2. The compromise solution 

found in this case is 802.9156 ($/h) for fuel cost, and 

0.2592 p.u for voltage deviation considering multi SVC 
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a
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e
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Fig. 11. Convergence characteristic of voltage control. 
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compensators which are better compared to the optimized 

results found without considering multi SVC Controllers. 

Fig. 11 shows the relationship between the voltage vector 

control of generating units and the iteration. It can be 

observed from results depicted in Table 2 that the voltage 

profile is improved, while the total cost increased slightly 

compared to case 1(fuel cost minimization, 799.3070 ($/h)). 

It is important to note that the final solution found for all 

cases satisfy all security constraints.  
 

● Minimization of fuel cost and total overloading 
 
The main objective of this case (case 2.2) is to enhance 

 

Table 3 System Data at critical situation. 

Faults: Branches [1-3], [2-6], [8-28] 

Loading Factor: λ (p.u) 1.034 

Total power demand (MW) 293.04 

 

Table 4 Control variables optimized: Case 2.2: Fuel cost 
and total overloading. 

Control 
Variable 

Base case 
Case 2: Multi objective function 

Cost & System loading 

PG1 116.56 96.7800 

PG2 79.62 48.3400 

PG5 50.00 50.0000 

PG8 20.00 35.0000 

PG11 20.00 30.0000 

PG13 20.00 40.0000 

VG1 1.0 1.0890 

VG2 1.0 1.0732 

VG5 1.0 1.0890 

VG8 1.0 1.0375 

VG11 1.0 1.0237 

VG13 1.0 1.0009 

T6-9 1.0 1.0765 

T6-10 1.0 0.9226 

T4-12 1.0 1.0148 

T28-27 1.0 0.9943 

svcQ (10) 0 4.6200 

svcQ (12) 0 4.6200 

svcQ (15) 0 2.7720 

svcQ (17) 0 4.6200 

svcQ (20) 0 4.4352 

svcQ (21) 0 5.6826 

svcQ (23) 0 3.5482 

svcQ (24) 0 4.2319 

svcQ (29) 

W
ith
o
u
t S
V
C
 C
o
n
tro
llers 

0 

W
ith
 S
V
C
 C
o
n
tro
llers 

4.6200 

FC ($/h) 948.9279  956.8886 

Loss (MW) 13.141  7.079 

DV (p.u) 1.6249  0.3198 

TOVL  0.3792 0.3476 

Max ijOVL  1.4210 0.8992 

Critical branch 2-4  2-4 

Total PG 306.180 300.12 

Total PD 293.04 293.04 

QGi Violation Yes No 

the system loadability at critical situation. The total fuel 

cost optimized in coordination with the total over loading 

index (TOVL). In this study the system optimized under 

the following critical situations: 

- Faults at three branches 1-3, 2-6, 8-28. 

- Load increased at a critical value ( λ =1.034 p.u) as 

follows: 
 

 
d o

d o

P P

Q Q

λ
λ

=


=
  (34) 

 
Where, λ  is the loading factor, oP , oQ  are the active 

and reactive power at the normal condition. 
Table 3 shows the new system data adapted in this case, 

from Table 4, It was found that the OVL indice in line 2-4  
 

Table 5 Control variables optimized using multi objective 
function: Case 2: Fuel cost and total overloading. 

Branch 
From 

Branch 
To 

Case 2: Multi objective function 

Cost & TOLV, ijS (MVA) 
max
ijS (MVA) 

1 2 96.8285 130 

1 3 0 130 

2 4 58.4489 65 

3 4 2.7745 130 

2 5 66.5025 130 

2 6 0 65 

4 6 36.9077 90 

5 7 32.0072 70 

6 7 23.0187 130 

6 8 4.7642 32 

6 9 17.4720 65 

6 10 25.0136 32 

9 11 31.5553 65 

9 10 34.3879 65 

4 12 12.2228 65 

12 13 40.4860 65 

12 14 8.2531 32 

12 15 20.7195 32 

12 16 9.8944 32 

14 15 2.4023 16 

16 17 7.0301 16 

15 18 7.1134 16 

18 19 4.2498 16 

19 20 8.3987 32 

10 20 8.8227 32 

10 17 5.9690 32 

10 21 17.2400 32 

10 22 8.2448 32 

21 22 2.1101 32 

15 23 7.1184 16 

22 24 6.3515 16 

23 24 3.3664 16 

24 25 3.2280 16 

25 26 4.4120 16 

25 27 6.4977 16 

28 27 17.8809 65 

27 29 6.6500 16 

27 30 7.3192 16 

29 30 4.3285 16 

8 28 0 32 

6 28 17.5809 32 

λ (p.u) 1.034, PD=293.04 MW 
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was 1.4210 p.u at the base case (without optimization) 

which is more than its stable limit (1 p.u), by adjusting 

dynamically the reactive power of shunt FACTS 

controllers installed at specified buses in coordination with 

the others control variables such as: tap transformers, 

voltage control of generating units, and active power 

generation, the congestion at line 2-4 relieved, the OVL at 

this line reduced to 0.8992 p.u, compared to the based case 

(1.4210 p.u), the voltage deviation also reduced to 0.3198 

p.u compared to the base case (1.6249 p.u ). Table 5 shows 

the optimal repartition of power transit in all lines 

considering faults in two lines and load increased with 

3.4% from the base case, as we can see the power flow in 

all lines are far from their thermal limits. We can also 

conclude that optimal adjustment of reactive power of 

multi SVC Controllers installed at specified buses 

enhances the power system security at critical situations. 

 

5.6 Test System 2: with valve-point loading effects 
 
This case study consisted of 13 thermal units of 

generation with the effect of valve point loading, it has 

more local minima and thus it is difficult to attain the 

global solution. The security constraints are not taken in 

consideration. The system data taken from [23]. The load 

demand of this test system is 1800 MW. The convergence 

of the best total fuel cost considering valve point effect is 

shown in Fig. 12.  
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Fig. 12. Convergence characteristic of the 13 generating 
units with valve point loading effects.  

 

The output power of the generators of the 13 unit test 

system in the minimum solution of the proposed approach 

and for the pattern search algorithm are shown in Table 6, 

the minimum cost achieved by the proposed approach 

(17963.92097$/h), is less than PS algorithm. Observing the 

comparison results depicted in Table 7, the proposed 

approach is shown to be more efficient than other recent 

metaheuristic optimization methods.  

Table 6. Economic Dispatch Results for 13-Generating 
Units using the Proposed Approach: PD=1800MW 

Our approach 
N° 

Run1 Run2… 
PS [24] 

1 628.2183 628.3155 538.5587 

2 149.5496 149.5184 224.6416 

3 222.9150 222.9137 149.8468 

4 109.8614 109.8651 109.8666 

5 109.8656 109.8591 109.8666 

6 109.8595 109.8196 109.8666 

7 60.0000 60.0000 109.8666 

8 109.8663 109.8528 109.8666 

9 109.8642 109.8559 109.8666 

10 40.0000 40.0000 77.4666 

11 40.0000 40.0000 40.2166 

12 55.0000 55.0000 55.0347 

13 55.0000 55.0000 55.0347 

TP (MW) 1800 1800 1800 

Cost $//h) 17964.05149 17963.92097 17969.17 

 

 

Table 7. Comparison of best results for fuel cost: Case 
Study: 13 thermal units with valve point effect. 

Methods 
Minimum 
Cost($/h) 

Particle swarm optimization [25] 18030.72000 

Evolutionary programming [25] 17994.07000 

Hybrid evolutionary programming with SQP [25] 17991.03000 

Genetic algorithm [25] 17975.34370 

Hybrid differential evolution [25] 17975.73000 

Hybrid particle swarm with SQP [25] 17969.93000 

Pattern search method [26] 17969.17000 

Best result of this paper  17963.92097 

 

 

6. Conclusion 
 

A simple differential evolution (DE) method integrated 

in a flexible Package based GUI using Matlab program is 

proposed and adapted to enhance the solution of the multi 

objective OPF under contingency situation considering 

multi shunt FACTS devices. The performance of the 

proposed strategy in terms of solution quality and 

convergence characteristics has been tested with IEEE 

30-Bus with smooth cost function considering all security 

constraints under abnormal conditions, and with 13 

generating units considering the valve point effects. The 

simulation results are compared with those by the other 

recent techniques. It is observed that the proposed 

approach is capable of finding the near global solution of 

non-linear and non-differentiable objective functions and 

obtain a competitive solution at critical situations. 
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