• Title/Summary/Keyword: evolution heat

Search Result 382, Processing Time 0.033 seconds

Preparation of TiO2-SiO2 Powder by Modified Sol-Gel Method and their Photocatalytic Activities (수식 졸-겔법에 의한 TiO2-SiO2분체합성 및 광촉매활성)

  • Kim, Byung-Kwan;Mizuno, Noritaka;Yasui, Itaru
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1042
    • /
    • 1996
  • Various $TiO_2-SiO_2$ composite powders were prepared by the modified sol-gel method using 1-dodecanol as DCCA (Dryng Control Chemical Additive ). Their characterizations were carried out and their photocatalytic catalysis was examined on the evolution reaction of hydrogen. The weight losses at $500^{\circ}C$ of only $TiO_2$ and $SiO_2$ powders were 33. 0wt% and 42.5wt%, respectively, and those of the $TiO_2/SiO_2$ powders ($TiO_2/SiO_2=25/75$, 50/50 and 75/25) were about $70.0{\pm}3.0wt%$. The released substances from the powders were almost organic matters. The as-prepared powders except only $TiO_2$ powder were amorphous. Transformation of anatase to rutil was hindered by $SiO_2$ component and the crystallinity of anatase was decreased with increasing $SiO_2$ contents. The as-prepared powders were bulky states. By heating at $600^{\circ}C$ for 1 hr $TiO_2-SiO_2$ powders ($TiO_2=100%$, $TiO_2/SiO_2=75/25,\;50/50$) showed agglomerates consisted of particles in submicron, but those of $TiO_2/SiO_2=25/75$ and $SiO_2=100%$ were still bulky states. Specific surface area of the powders heat-treated at $600^{\circ}C$ for 1hr was increased with $SiO_2$ concents and their pore sizes were also depended on $SiO_2$ contents. The photocatalytic activity of $TiO_2/SiO_2=75/25$ heat-treated at $600^{\circ}C$ for 1hr was 0.240mo1/h.g-cat as $H_2$ evolution rate. This value was about 2.0 times that of P-25(Degussa P-25) as a standard photocatalyst.

  • PDF

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

Fabrication of TFA-MOD YBCO Films Using Y2Ba1Cu1Ox Process (Y2Ba1Cu1Ox공정을 이용한 TFA-MOC YBCO 박막 공정 개발)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Ha, Hong-Soo;Joo, Jinho;Nah, Wansoo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.98-105
    • /
    • 2006
  • YBCO film was synthesized by using a new approach to the TFA-MOD method. In the fabrication process, $Y_2Ba_1Cu_1O_x\;and\;Ba_3Cu_5O_8$ powders were used as precursors (the so called '211 process'), instead of Y-, Ba-, and Cu-based acetates, and dissolved in trifluoroacetic acid followed by calcining and firing heat treatment. Consequently, we successfully fabricated YBCO film and evaluated the phase formation, texture evolution, and critical properties as a function of the calcining and firing temperature and humidity, in order to explore its possible application in coated conductor fabrication. The films were calcined at $430-460^{\circ}C$ and then fired at $750-800^{\circ}C\;in\;a\;0-20\%$ humidified $Ar-O_2$ atmosphere. We observed that $BaF_2$ phase was effectively reduced and that a sharp and strong biaxial texture formed under humidified atmosphere leading to increased critical properties. In addition, we found that the microstructure varied significantly with the firing temperature: the grain grew further, the film became denser, and the degree of texture and phase purity varied as the firing temperature increased. For the film fired at $775^{\circ}C$ after calcining at $460^{\circ}C$, the critical current was obtained to be 39 A/cm-width (corresponding critical current density is $2.0\;MA/cm^2$ which was probably attributed to such factors as the enhanced phase purity and out-of-plane texture, the moderate film density and grain size, and crack-free surface.

Surface Treatment of Al(OH)3 using Dilute Hydrofluoric Acid Aqueous Solution (저농도 HF 수용액을 이용한 Al(OH)3의 표면처리)

  • Kim, Do-Su;Lee, Churl-Kyoung;Yang, Dong-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.315-320
    • /
    • 2002
  • Treatment effects of dilute hydrofluoric acid (6 wt% HF) on the surface properties of $Al(OH)_3$ were investigated at the molar ratio of F/Al(fluoride/aluminum)=0.15. Temperature and pH variations in the reaction system were recorded to analyze reaction mechanism between $Al(OH)_3$ and aqueous Hf. The reaction of HF to the surface of $Al(OH)_3$ accompanied with a quantity of heat evolution, resulting in increasing temperature of a reactionsystem. And also the reaction was proceeded as transitional state which metastable ${\alpha}-form\;AlF_3{\cdot}3H_2O$ was transferred to insoluble ${\beta}$-form. The resulting ${\beta}-form\;AlF_3{\cdot}3H_2O$ formed by a surface treatment was identified by FT-IR and X-ray diffractormetry. The formation of ${\beta}$-form aluminum fluoride hydrates with diameter less than $1{\mu}m$ on the surface of $Al(OH)_3$ could be visulaized by SEM imgae, making up a coating layer as precipitate-like. The surface whiteness of $Al(OH)_3$ treated with aqueous HF was furthermore increased approximately 6.6% due to the formation of surface hydrates.

Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering (스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구)

  • An, Yeong-Suk;Song, O-Seong;Lee, Jin-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.601-606
    • /
    • 2000
  • Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

  • PDF

Fluidity and Hydration Properties of Cement Paste Added Zinc Fluosilicate(ZnSiF6, aq.) (규불화아연(ZnSiF6, aq)이 첨가된 시멘트의 유동성과 수화특성)

  • Kim, Do-Su;Khil, Bae-Su;Lim, Heon-Seong;Nam, Jae-Hyun;Rho, Jae-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • Zinc fluosilicate ($ZnSiF_6$, 15% aqueous solution) was prepared using zinc oxide (ZnO) and fluosilicic acid ($H_2SiF_6$) by soluiton synthetic method. The fluidity and hydration properties of cement which was added $ZnSiF_6$ (aq.) as an additive for cement were studied. At water to cement ratio (W/C) equals to 0.45, the initial fluidity and slump loss of cement paste which the addition of $ZnSiF_6$ (aq.) was increased from 1.0% to 4.0% based on cement weight were investigated. Initial fluidity of cement paste was measured by mini-slump test and slump loss was examined by measuring the fluidity variation of cement paste with time elapsed from 0 min to 120 min at intervals 30 min. Also, the effect of $ZnSiF_6$ addition on the setting and hydration of cement paste when $ZnSiF_6$ increased in the addition range 1.0% to 3.0% were investigated. The fluidity of cement paste which was added 2.1% $ZnSiF_6$ (aq.) presented the highest value among all addition ranges. The setting time of cement paste was retarded gradually and the heat evolution of hydrated cement was reduced with the increasing of $ZnSiF_6$ addition.

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy (Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

CFD analysis for effects of the crucible geometry on melt convection and growth behavior during sapphire single crystal growth by Kyropoulos process (사파이어 단결정의 Kyropoulos 성장시 도가니 형상에 따른 유동장 및 결정성장 거동의 CFD 해석)

  • Ryu, J.H.;Lee, W.J.;Lee, Y.C.;Jo, H.H.;Park, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • Sapphire single crystals have been highlighted for epitaxial gallium nitride films in high-power laser and light emitting diode (LED) industries. Among the many crystal growth methods, the Kyropoulos process is an excellent commercial method for growing larger, high-optical-quality sapphire crystals with fewer defects. Because the properties and growth behavior of sapphire crystals are influenced largely by the temperature distribution and convection of molten sapphire during the manufacturing process, accurate predictions of the thermal fields and melt flow behavior are essential to design and optimize the Kyropoulos crystal growth process. In this study, computational fluid dynamic simulations were performed to examine the effects of the crucible geometry aspect ratio on melt convection during Kyropoulos sapphire crystal growth. The results through the evolution of various growth parameters on the temperature and velocity fields and convexity of the crystallization interface based on finite volume element simulations show that lower aspect ratio of the crucible geometry can be helpful for the quality of sapphire single crystal.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF