• Title/Summary/Keyword: event prediction

Search Result 322, Processing Time 0.029 seconds

Large-scale Atmospheric Patterns associated with the 2018 Heatwave Prediction in the Korea-Japan Region using GloSea6

  • Jinhee Kang;Semin Yun;Jieun Wie;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • In the summer of 2018, the Korea-Japan (KJ) region experienced an extremely severe and prolonged heatwave. This study examines the GloSea6 model's prediction performance for the 2018 KJ heatwave event and investigates how its prediction skill is related to large-scale circulation patterns identified by the k-means clustering method. Cluster 1 pattern is characterized by a KJ high-pressure anomaly, Cluster 2 pattern is distinguished by an Eastern European high-pressure anomaly, and Cluster 3 pattern is associated with a Pacific-Japan pattern-like anomaly. By analyzing the spatial correlation coefficients between these three identified circulation patterns and GloSea6 predictions, we assessed the contribution of each circulation pattern to the heatwave lifecycle. Our results show that the Eastern European high-pressure pattern, in particular, plays a significant role in predicting the evolution of the development and peak phases of the 2018 KJ heatwave approximately two weeks in advance. Furthermore, this study suggests that an accurate representation of large-scale atmospheric circulations in upstream regions is a key factor in seasonal forecast models for improving the predictability of extreme weather events, such as the 2018 KJ heatwave.

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.

ALGORITHM OF SEU RATE PREDICTION INSIDE SPACECRAFTS

  • Kim, Y.C.;Lee, J.H.;Shin, Y.H.;Min, K.W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.40-47
    • /
    • 1996
  • One of the important effects of the space environment on the satellites and spacecrafts is the single event upsets (SEUs) which are caused by the high energy particles in space. A SEU occurs when an ionizing radiation produces a burst of electron-hole pairs in a digital microelectronic circuit and causes the charge state to change. We have developed and integrated a software package which can estimate the SEU rates for any specified locations or altitudes under various geophysical conditions. We report in this paper the algorithm of the software and the results for some devices with known parameters. We also compare the results with actual observations made by Akebono.

  • PDF

Domestic earthquake prediction using bayesian approach (베이지안 기법을 이용한 국내 지진 사고 예측)

  • Yang, Hee-Joong
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.119-125
    • /
    • 2009
  • We predict the earthquake rate in Korea following Bayesian approach. We make a model that can utilize the data to predict other levels of earthquake. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for earthquake occurrence rate and probabilities to escalating to more severe earthquakes are assumed and likelihood of number of earthquake in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We find that the minor level of earthquake is increasing while major level of earthquake is less likely.

A Study on Financial Loss Assessment of Voltage Sags (순간전압강하 경제적 손실 평가 연구)

  • Park, Jomg-Il;Song, Young-Won;Park, Chang-Hyun;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.324-325
    • /
    • 2011
  • This paper addresses the assessment of voltage sag costs based on the stochastic prediction of voltage sags. When voltage sags below a certain voltage threshold occur at sensitive industrial process, the industrial customer will experience financial damage. In order to mitigate voltage sag costs and devise efficient solutions to mitigate damage, a study on the financial loss assessment of voltage sags is basically needed. In order to assess the voltage sag costs, the expected sag frequency at a sensitive load point should be calculated by using the concept of the area of vulnerability and historical fault statistics. Then, financial loss due to voltage sags can be obtained by multiplying the expected sag frequency by the cost per sag event.

  • PDF

An Object Oriented Performance Prediction System (객체 지향 성능 예측 시스템)

  • 백승훈;홍준성;박규호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.457-459
    • /
    • 1998
  • 본 논문에서는 하드웨어-소프트웨어 시스템에서의 시스템 레벨 모델링 및 통합 모의 실험(co-simulation)에 관한 새로운 방법을 다루고 있다. 복잡한 시스템의 하드웨어와 소프트웨어를 하나의 객체 지향 방법론으로 모델링 및 모의 실험하여 빠르고 쉽고 정확하게 시스템의 성능을 예측하고 분석하여, 시스템 설계가 최적화 되도록 도움을 주는 설계 도구를 제안한다. ASIC, 보조 디바이스, 벗, 디스크 및 소프트웨어 등을 객체 지향 모델링 방법인 UML(Unified Modeling Language) 형식론으로 시스템의 구조를 GUI을 사용하여 모델링하고, 이것으로부터 자동적으로 DEVS(Discrete EVent System) 모의 실험 모델을 생성해내어 통합 모의 실험을 수행함으로써 시스템의 성능을 쉽고 빠르게 측정하고 예측하는 방법론을 제시한다. UML과 DEVS는 형식론으로서, UML은 추상화 수준의 시스템 모델링과 그래픽 사용자 인터페이스를 제공하며, 모의 시험은 DEVS의 시뮬레이터인 DEVS++을 사용하였다. DEVS++는 C++ 라이브러리 형태이므로 쉽게 UML에서 DEVS 형식론으로 모의 실험 모델을 추가하여 간단한 모델링할 수 있을 뿐만 아니라 정확한 모의 실험 결과를 얻을 수 있다.

An Unavailability Evaluation for a Digital Reactor Protection System (디지털 원자로보호계통 불가용도 평가)

  • Lee, Dong-Yeong;Choe, Jong-Gyun;Kim, Ji-Yeong;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.81-83
    • /
    • 2005
  • The Reactor Protection System (RPS) is a very important system in a nuclear power plant because the system shuts down the reactor to maintain the reactor core integrity and the reactor coolant system pressure boundary if the plant conditions approach the specified safety limits. This paper describes the unavailability assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system. and applied to the reactor protection system being developed in Korea.

  • PDF

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.

A Research on the LYNX-ESM System Operating and Performance Prediction Simulation Based on DEVS (이산사건 모델링 및 시뮬레이션 기반 LYNX-ESM 체계 시뮬레이션에 관한 연구)

  • Shin, Dong-Cho;Yun, Ki-Cheonn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.61-70
    • /
    • 2006
  • This paper is to describe LYNX-ESM Simulation System to simulate for EW operating environment analysis and system performance verification of LYNX-ESM system using Discrete Event Simulation(DEVS) Methodology. This system consists of 3 PC with TCP/IP network. Each PC is loaded with Modeling & Simulation program based DEVS. Each connected program conducts EW simulation. As a result, we analyze the operating environment of the maritime EW threat, simulate the EW threat discrimination and geolocation capability, and estimate the LYNX-ESM system effectiveness before real LYNX-ESM system development.

The Evaluation of Strength and Damage Characteristics by AE in Impact Test of CFRP (탄소섬유 복합재료의 AE에 충격손상재강도와 손상특성 평가)

  • 이상국;오세규;남기우;김옥균
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1995
  • This study is aimed to have a database of system development for the prediction, monitoring, analyzing, and evaluation of tensile strength and damage characteristics through AE technique for CFRP. Therefore the correlations between impact characteristics (such as impact velocity, impact energy, delamination area etc) and AE signals for CFRP laminates were investigated. And also it were accomplished the evaluation of tensile strength and the investigation on correlation with AE signals for impact damaged specimen of CFRP laminates.

  • PDF