Process mining is state-of-the-art technology in the workflow field. Recently, process mining becomes more important because of the fact that it shows the status of the actual behavior of the workflow model. However, as the process mining get focused and developed, the material of the process mining - workflow event log - also grows fast. Thus, the process mining algorithms cannot operate with some data because it is too large. To solve this problem, there should be a lightweight process mining algorithm, or the event log must be divided and processed partly. In this paper, we suggest a set of operations that control and edit XES based event logs for process mining. They are designed based on relational algebra, which is used in database management systems. We designed three operations for tailoring XES event logs. Select operation is an operation that gets specific attributes and excludes others. Thus, the output file has the same structure and contents of the original file, but each element has only the attributes user selected. Union operation makes two input XES files into one XES file. Two input files must be from the same process. As a result, the contents of the two files are integrated into one file. The final operation is a slice. It divides anXES file into several files by the number of traces. We will show the design methods and details below.
PLC 등의 현장제어기기는 주요 이벤트 정보를 로깅하는 기능이 없기 때문에 사고분석이 힘들다. 따라서, PLC, IED와 같은 현장제어기기의 주요 이벤트 정보를 로깅하여, 사이버 사고 발생 시 분석이 가능한 정보 확보가 필요하다. 이벤트 로깅을 위한 현장제어기기(임베디드기기) 통신 프로토콜을 분석하기 위해서는 프로토콜 애널라이저(분석기)가 필요하다. 그러나 Wireshark와 같은 기존의 분석기는 페이로드 데이터 기반의 다양한 프로토콜 분석 및 분류가 어렵고 이벤트 로깅을 위한 대용량의 데이터 식별 및 추출을 처리하기에는 어려움이 있다. 따라서, 본 논문에서는 대용량의 이벤트 로깅을 위한 빅데이터 기반 현장제어기기 통신프로토콜 페이로드 데이터 추출을 위한 시스템을 연구개발하였다.
High performance sensors and modern data logging technology with real-time telemetry facilitate system fault diagnosis in a very precise manner. Fault detection, isolation and identification in fault diagnosis systems are typical steps to analyze the root cause of failures. This systematic failure analysis provides not only useful clues to rectify the abnormal behaviors of a system, but also key information to redesign the current system for retrofit. The main barriers to effective failure analysis are: (i) the gathered data (event) logs are too large in general, and further (ii) they usually contain noise and redundant data that make precise analysis difficult. This paper therefore applies suitable pre-processing techniques to data reduction and feature extraction, and then converts the reduced data log into a new format of event sequence information. Finally the event sequence information is decoded to investigate the correlation between specific event patterns and various system faults. The efficiency of the developed pre-filtering procedure is examined with a terminal box data log of a marine diesel engine.
로그 데이터는 정보 시스템의 주요 동작과 상태를 이해하고 판단하는 근거로 사용되어 왔으며, 여러 보안 분야 응용에서도 중요한 입력 데이터로 사용된다. 로그 데이터로부터 필요한 정보를 얻어 이를 근거로 의사 결정을 하고, 적절한 대응 방안을 취하는 것은 시스템을 보호하고 안정적으로 운영하는 데 있어 필수적인 요소이지만, 로그의 종류와 양이 폭발적으로 증가함에 따라 기존 도구들로는 효과적이고 효율적인 대응이 쉽지 않은 상황이다. 이에 본 연구에서는 자연어 처리 기반의 머신 러닝을 이용해 멀티 소스 이벤트 로그의 보안 심각도를 여러 단계로 분류하는 방법을 제안하였으며, 472,972건의 훈련 및 테스트 샘플을 이용하여 실험을 수행한 결과 99.59%의 정확도를 달성하였다.
본 연구는 논으로부터 배출되는 오염물질항목별(COD, TOC, T-N, T-P, SS) 농도 분포에 적합한 확률분포모형을 분석하고 실측 평균 EMC와 확률분포 모형을 통해 추정된 중앙값 EMC(EMC50)값과 비교하였다. 이를 위해 2008년부터 2011년까지 전라남도 함평군에 위치한 논에서 모니터링을 수행하였다. 그 결과 COD는 3가지 확률분포모형(Normal, Log-Normal, Gamma), T-N은 4가지 확률분포모형(Normal, Log-Normal, Gamma, Weibull), T-P와 TOC는 3가 지 확 률 분 포 모 형 (Log-Normal, Gamma, Weibull), SS는 2가지 확률분포모형 (Log-Normal, Gamma)에서 적합한 것으로 나타났다. 특히, Log-Normal과 Gamma 확률분포모형은 모든 수질항목에 적합한 확률분포모형인 것으로 나타났다. 한편, 강우시 논 유출수의 수질항목별 평균값과 확률분포모형을 통해 추정된 EMC 중앙값과 비교한 결과 COD는 Gamma, TOC, T-N, T-P, SS는 Log-Normal 확률분포모형의 값과 비슷하게 나타났다.
Nowadays, since there are so many big data available everywhere, those big data can be used to find useful information to improve design and operation by using various analysis methods such as data mining. Especially if we have event log data that has execution history data of an organization such as case_id, event_time, event (activity), performer, etc., then we can apply process mining to discover the main process model in the organization. Once we can find the main process from process mining, we can utilize it to improve current working environment. In this paper we developed a new method to find a final diagnosis of a patient, who needs several procedures (medical test and examination) to diagnose disease of the patient by using process mining approach. Some patients can be diagnosed by only one procedure, but there are certainly some patients who are very difficult to diagnose and need to take several procedures to find exact disease name. We used 2 million procedure log data and there are 397 thousands patients who took 2 and more procedures to find a final disease. These multi-procedure patients are not frequent case, but it is very critical to prevent wrong diagnosis. From those multi-procedure taken patients, 4 procedures were discovered to be a main process model in the hospital. Using this main process model, we can understand the sequence of procedures in the hospital and furthermore the relationship between diagnosis and corresponding procedures.
As the number of internet-connected appliances and the variety of IoT services are rapidly increasing, it is hard to protect IT assets with traditional network security techniques. Most traditional network log analysis systems use rule based mechanisms to reduce the raw logs. But using predefined rules can't detect new attack patterns. So, there is a need for a mechanism to reduce congested raw logs and detect new attack patterns. This paper suggests enterprise security management for IoT services using graph and network measures. We model an event network based on a graph of interconnected logs between network devices and IoT gateways. And we suggest a network clustering algorithm that estimates the attack probability of log clusters and detects new attack patterns.
The process of tracking suspicious behavior manually on a system and gathering evidence are labor-intensive, variable, and experience-dependent. The system logs are the most important sources for evidences in this process. However, in the Microsoft Windows operating system, the action events are irregular and the log structure is difficult to audit. In this paper, we propose a model that overcomes these problems and efficiently analyzes Microsoft Windows logs. The proposed model extracts lists of both common and key events from the Microsoft Windows logs to determine detailed actions. In addition, we show an approach based on the proposed model applied to track illegal file access. The proposed approach employs three-step tracking templates using Elastic Stack as well as key-event, common-event lists and identify event lists, which enables visualization of the data for analysis. Using the three-step model, analysts can adjust the depth of their analysis.
클라우드 마이그레이션 증가와 함께 클라우드 컴퓨팅 환경에서의 보안 위협도 급증하고 있다. 이에 효율적인 사고조사를 수행하기 위한 로그 데이터 분석의 중요성이 강조되고 있다. 클라우드 환경에서는 서비스 다양성과 간편한 리소스 생성 등의 특성으로 인해 대량의 로그 데이터가 생성된다. 이로 인해 사고 발생 시 어떤 이벤트를 조사해야 하는지 판단하기 어렵고, 방대한 데이터를 모두 확인하려면 상당한 시간과 노력이 필요하다. 따라서 데이터를 효율적으로 조사하기 위한 분석체계가 필요하다. AWS(Amazon Web Services)의 로깅 서비스인 CloudTrail은 계정에서 발생한 모든 API 호출이벤트로그를 수집한다. 그러나 사고 발생 시 어떤 로그를 분석해야 하는지 판단하기 위한 인사이트 제공 역할은 부족하다. 본 논문에서는 Cloud Matrix와 이벤트 정보를 연계하여 사고 조사를 효율적으로 수행할 수 있도록하고, 이를 기반으로 사용자 행위 로그 이벤트의 발생 빈도 및 공격 정보를 동시에 확인할 수 있는 자동화 분석프레임 워크를 제안한다. 이를 통해 ATT&CK Framework를 기반으로 주요 이벤트를 식별하고, 사용자 행위를 효율적으로 파악함으로써 클라우드 사고 조사에 기여할 것으로 기대한다.
Workflow management system is a system that manages the workflow model which defines the process of work in reality. We can define the workflow process by sequencing jobs which is performed by the performers. Using the workflow management system, we can also analyze the flow of the process and revise it more efficiently. Many researches are focused on how to make the workflow process model more efficiently and manage it more easily. Recently, many researches use the workflow log files which are the execution history of the workflow process model performed by the workflow management system. Ourresearch group has many interests in making useful knowledge from the workflow event logs. In this paper we use XES log files because there are many data using this format. This papersuggests what are the cardinalities of the temporal workcases and how to get them from the workflow event logs. Cardinalities of the temporal workcases are the occurrence pattern of critical elements in the workflow process. We discover instance cardinalities, activity cardinalities and organizational resource cardinalities from several XES-based workflow event logs and visualize them. The instance cardinality defines the occurrence of the workflow process instances, the activity cardinality defines the occurrence of the activities and the organizational cardinality defines the occurrence of the organizational resources. From them, we expect to get many useful knowledge such as a patterns of the control flow of the process, frequently executed events, frequently working performer and etc. In further, we even expect to predict the original process model by only using the workflow event logs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.