• Title/Summary/Keyword: evapotranspiration model

Search Result 320, Processing Time 0.033 seconds

The Evaluation on the Environmental Effect of Coal-Ash and Phosphogypsum as the Evapotranspiration Final Cover Material (증발산 원리를 이용한 매립장 최종 복토공법의 복토재로서 석탄재와 인산석고의 환경적 영향 평가)

  • Yu, Chan;Yang, Kee-Sok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • In this study, the utilization of coal-ash and phosphogypsum was considered as the evapotranspiration final landfill cover(ET cover) material. Cover material considered was the mixture of the weathered granite soil, coal-ash and phosphogypsum and so we sequentially performed the leaching test, column test and field model test to investigate the environmental effects of mixtures of coal-ash and phosphogypsum. In the leaching test, all materials had lower heavy metal concentration than the regulated threshold values. The column test and the review of related regulations were carried out to determine the optimum mixing ratio(OMR) and OMR was soil(4):coal-ash(1): phosphogypsum(1) on the volume base, which was applied to field model test. Field model tests were continued from February to June, 2004 in the soil box that was constructed with cement block. It was verified that coal-ash and phospogypsum mixed with soil was safe environmentally and the mixture of both wastes could improve the water retention capacity of cover materials.

  • PDF

Improvement of the DAWAST Model (DAWAST 모형의 개선)

  • Lee, Jae-Myun;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.249-252
    • /
    • 2002
  • This model is the daily streamflow model of the Korean watersheds has been developed to simulate the daily streamflow with the data of daily rainfall and pan evaporation. Parameters of this model are the water balance parameters composed Umax, Lmax, FC, CP, and CE and the routing parameters composed $U_i,\;k_1\;and\;k_2$. Among these parameters, CE value is applied one fixed value during the year and coefficient of initial ion K is empirically determined by 0.2. The object of this research is to improve the DAWAST model by application of the monthly value of CE for evapotranspiration and the revised K value for the initial abstraction.

  • PDF

A Tank Model Shell Program for Simulating Daily Streamflow from Small Watersheds (Tank모형 쉘프로그램을 이용한 중소하천의 일유출량 추정)

  • 박승우
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 1993
  • A menu-driven shell program DSFS (Daily Streamflow Simulation Model), that can process the input data, optimize the parameters, execute the program, and graphically display the results of a modified tank model, was developed and applied to simulating daily streamflow from small watersheds. The model defines daily watershed evapotranspiration losses from potential values multiplied by monthly landuse coefficients and correction factors for soil water storage levels. The parameters were calibrated using observed hydrologic data for fifteen watersheds, and the results were correlated with watershed parameters to define empirical relationships. The proposed model was tested with streamflow data of ungaged conditions, and the simulation results overestimated the annual runoff.

  • PDF

Rainfall Excess Model for Forest Watersheds (산지유역의 초과우량 추정 모형)

  • 남선우;최은호
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.351-361
    • /
    • 1990
  • Considering the hydrological los components such as evapotranspiration, interception, surface storage and infiltration, a rainfall excess model for forest watersheds is derived. The Morton model is adopted to estimate the evapotranspration under the wetted environmental conditions. Canopy effects and ground cover interception storage rates are used to determine the net rainfall rates arrived on the surface soil. The infiltration capacity on the permeable surface is estimated from the revised Green-Ampt model derived for the natural unsteady rainfall events. The rainfall excess model derived is applied with the data from Jangpyung watershed, one of the representative watersheds of IHP. Parameters which are calibrated with the data from ten storms, the hydrometeorological, land use and soil informations, and other researchers' papers are presented.

  • PDF

Combining Four Elements of Precipitation Loss in a Watershed (유역내 네가지 강수손실 성분들의 합성)

  • Yoo, Ju-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

Assessment of three optimization techniques for calibration of watershed model

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.428-428
    • /
    • 2017
  • In this study, three optimization techniques efficiency is assessed for calibration of the GR4J model for streamflow simulation in Selmacheon, Boryeong Dam and Kyeongancheon watersheds located in South Korea. The Penman-Monteith equation is applied to estimate the potential evapotranspiration, model calibration, and validation is carried out using the readily available daily hydro-meteorological data. The Shuffled Complex Evolution-University of Arizona(SCE-UA), Uniform Adaptive Monte Carlo (UAMC), and Coupled Latin Hypercube and Rosenbrock (CLHR) optimization techniques has been used to evaluate the robustness, performance and optimized parameters of the three catchments. The result of the three algorithms performances and optimized parameters are within the recommended ranges in the tested watersheds. The SCE-UA and CLHR outputs are found to be similar both in efficiency and model parameters. However, the UAMC algorithms performances differently in the three tested watersheds.

  • PDF

Impact of water deficiency on agro economy: a case study of Northwest Bangladesh

  • Hasan, Mohammad Kamrul;Kim, Kye-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.641-646
    • /
    • 2009
  • This study examines the effects of water shortage on agricultural wages in Northwest Bangladesh. For this study, meteorological data including information on the monthly temperature, precipitation, wind speed, hour of sunshine and humidity of six weather stations have been utilized during the monitoring period from 1985 to 2005. With the objective to analyze water surplus and water deficiency, a simple soil-water balance model and the modified Penman formula were applied to the Northwest Bangladesh. The seasonality of Mann-Kendell trend statistics has been used to identify the spatial variation of water surplus and deficiency throughout the region. For micro level verification of the result, a detailed field survey has been conducted within the study area. The results showed that the values of the potential evapotranspiration estimated by the modified Penmen equation were negative for certain periods. In this instance, the water deficiency of the district of Rajshahi was observed significantly in the period of pre-monsoon and post-monsoon. The field study also verified that because of such deficiency in water, the agricultural scenario of the area was widely influenced which lead to less agricultural production and less economic benefits.

  • PDF

Intercomparison of interannual changes in NDVI from PAL and GIMMS in relation to evapotranspiration over northern Asia

  • Suzuki Rikie;Masuda Kooiti;Dye Dennis
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.162-165
    • /
    • 2004
  • The authors' previous study found an interannual covariability between actual evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) over northern Asia. This result suggested that vegetation controls interannual variation in ET. In this prior study, NDVI data from the Pathfinder AVHRR Land (PAL) dataset were analyzed. However, studies of NDVI interannual change are subject to uncertainty, because NDVI data often contain errors associated with sensor- and atmosphere-related effects. This study is aimed toward reducing this uncertainty by employing NDVI dataset, from the Global Inventory Monitoring and Modeling Studies (GIMMS) group, in addition to PAL. The analysis was carried out for the northern Asia region from 1982 to 2000. 19-year interannual change in PAL-NDVI and GIMMS-NDVI were both compared with interannual change in model-assimilated ET. Although the correlation coefficient between GIMMS-NDVI and ET is slightly less than for PAL-NDVI and ET, for both NDVI datasets the annual maximum correlation with ET occurs in June, which is near the central period of the growing season. A significant positive correlation between GIMMS-NDVI and ET was observed over most of the vegetated land area in June as well as PAL-NDVI and ET. These results reinforce the authors' prior research that indicates the control of interannual change in ET is dominated by interannual change in vegetation activity.

  • PDF

Estimation of Evapotranspiration using Satellite data and Meteorological Model (인공 위성과 기상 모형을 이용한 증발산 추정)

  • Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Jea-Chul;Kim, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.213-218
    • /
    • 2009
  • 에너지 전달 과정과 밀접한 관계가 있는 증발산(Evapotranspiration)은 기후 변화나 육상 생태계 생산성에서 매우 중요한 요소이며, 수문학적 순환과 지역적 물 관리 측면에서 매우 중요하다. 최근 인공위성을 이용하여 증발산을 추정하기 위한 노력이 많이 진행되고 있으며, 특히 MODIS (Moderate Resolution Imaging Spectroradiometer)는 증발산을 추정하기 위한 좋은 정보를 제공하고 있다 하지만, 구름 등에 의한 증발산 입력 자료 결측은 전체 자료의 획득률을 낮추고, 연속적인 증발산 모니터 링을 제한한다. 따라서 본 연구에서는 MODIS 기반의 증발산 입력 자료의 개선하여 서로 다른 식생과 지형 구조를 갖는 플럭스 연구지에 대한 증발산의 추정 및 평가하고, 남한에 대한 MODIS 기반의 증발산 지도 작성하였다. 또한 구름에 의해 결측된 날에 대해서는 MODIS-MM5 4차원 자료동화 기법을 이용한 증발산의 연속적인 모니터링 기법을 개발하였다. MODIS 기반의 증발산을 추정하기 위해 Revised RS-PM 알고리즘을 사용하였다. 증발산을 평가하기 위해 4 곳의 플럭스 연구지(광릉, 해남 이상 대한민국, 타카야마, 토마코아미 이상 일본) 자료와 비교하였고, 매우 신뢰성 있는 결과를 얻을 수 있었다. MODIS 입력 자료의 개선으로 획득률은 2배 가량 증가하였다. 남한에 대한 연간 증발산은 평균적으로 약 35%의 획득률 (365일 중 약 120일)과 함께 산출되었고, 시 공간적인 분포를 잘 나타내었다. 구름 낀 날에 대한 MODIS-MM5 자료 동화 기법의 적용은 증발산의 연속적인 모니터링을 가능하게 하였다.

  • PDF

Drought Characterization Using a Generalized Complementary Principle of Evapotranspiration (증발산 상호보완이론을 이용한 실제증발산기반 가뭄해석)

  • Chun, Jong Ahn;Kim, Daeha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.380-380
    • /
    • 2019
  • 본 연구에서는 일반 상호보완이론(Generalized Complementary Relationship, GCR)을 활용하여 실제증발산량을 추정하고, 추정한 실제증발산량기반 가뭄지수로부터 미국 전역에 대한 가뭄을 해석하는 것이다. 월강수량, 최고 최저기온, 이슬점온도 등의 필요한 기상자료는 Parameter-elevation Relationships on Independent Slopes Model(PRISM)으로부터 수집하였으며, 1981년부터 2015년까지 총 35년의 미국 전역에 대한 실제증발산량을 추정하였다. 대상지역의 유역평균 강수량과 유출량의 차(P-Q)와 North American Land Data Assimilation System(NLDAS-2) Noah 지표모형(Land surface models)으로 산정한 실제증발산량과 비교 검증하였다. GCR로부터 증발산 부족량(ET Deficit, ETD)을 산정하고 이를 표준정규화하여 미국 전역에 대해 Standardized Evapotranspiration Deficit Index(SEDI)를 산정하였다. 본 연구로부터 GCR 기반 실제증발산량은 P-Q의 값과 상관계수가 0.94로 매우 높은 상관성을 보였으며, NLDAS-2 Noah모형의 실제증발산량보다 다소 크게 추정하는 경향을 보였다. SEDI와 Standard Precipitation Index(SPI)의 상관성은 지속시간이 클수록 더 크게 나타났다. 증발산 상호보완이론활용 실제증발산기반 SEDI이 강수자료를 사용하지 않고서도 적절한 가뭄해석에 이용될 수 있을 것으로 판단된다.

  • PDF