• Title/Summary/Keyword: evaporation-efficiency

Search Result 426, Processing Time 0.035 seconds

Process TAC Time Reduction Technology for Improving the Efficiency and Throughput of the PDP (PDP 효율 및 생산성 향상을 위한 공정단순화 기술)

  • Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2013
  • This paper focuses on the fundamental issues for improving the efficiency and throughput of the AC PDP (Plasma Display Panel) manufacturing. The properties of the MgO protective layer affect the PDP efficiency. Especially, the secondary electron emission efficiency was affected on the deposition rate of MgO during the evaporation. In this study, the deposition rate of 5 $\AA$/s has given the maximum efficiency value of 0.05 It is demonstrated that the impurity gases such as $H_2O$, $CO_2$, CO or $N_2$, and $O_2$ can be remained inside the PDP panel before sealing and the amount of the impurity gases decreased rapidly as the base vacuum level increased, especially near $10^{-5}$ torr. The fundamental solution in order to overcome these problems is the vacuum in-line sealing process from the MgO evaporation to the final sealing of the panel without breaking the vacuum. We have demonstrated this fundamental process technology and shown the feasibility. The firing voltage was reduced down to 285 V at the base vacuum value of $10^{-6}$ torr, whreras it was about 328 V at the base vacuum value of $10^{-3}$ torr.

Characterization of Cu(InGa)Se$_2$ Solar Cells with Se Evaporation Conditions (Se원소의 증발조건이 Cu(InGa)Se$_2$ 박막 태양전지 특성에 미치는 영향)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.383-386
    • /
    • 2002
  • Polycrystalline Cu(In,Ga)Se$_2$(CIGS) thin-films were grown by co-evaporation on a soda lime glass substrate. In this paper the effects of the Se evaporation temperature on the properties of CuIn0.75Ga0.25Se2 (CIGS) thin films. Structure, surface morphology and optical properties of CIGS thin films deposited at various Se evaporation temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher Se evaporation temperatures the films displayed a lower degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously. These results were supported by experimental work using scanning electron microscopy When the Se evaporation temperature was increased, the average grain size also decreased together with a reduction Cu content. The Se evaporation temperature also had a significant inf1uence on the transmission spectra. Increasing the Se evaporation temperature, the cell efficiency was improved dramatically to 11.75% with Voc = 556 mV, Jsc = 32.17 mA/cm2 and FF = 0.66. The Se evaporation temperature is an important parameter in thin film deposition regardless of the deposition technique being used to deposit thin films

  • PDF

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.

A Study of Evaporation and Ignition Characteristics of Single Fuel Droplet (단일액적의 증발 및 착화특성에 관한 연구)

  • 백병준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.551-559
    • /
    • 1998
  • Evaporation and ignition characteristics of fuel droplet have major influences on the efficiency and performance of engine. In the present study the experiment of evaporation and self-ignition of single fuel was performed under the various ambient conditions. An individually suspended droplet of n-heptane n-hexadecane ethyl-alcohol and light oil were employed as a liquid droplet. Evaporation and ignition characteristics were measured by using the video-camera and image processing technique under the various ambient temperatures (up to 1000310 OC)and partial pressure of oxigen(up to 60%) The evaporation curve shows that the droplet life time ignition delay time decreases as the ambient temperature and partial pressure of oxigen increase, The temperature variations of droplet were also reported for various fuel and ambient temperatures. The numerical simulations were carried out to predict droplet diameter and temperature with favorable agreement.

  • PDF

The development of the highly efficient Circular Nozzle Source by using a study on the flux distributions of nozzle type thermal evaporation sources

  • Kim, Sung-Moon;Jeong, Kwang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1171-1174
    • /
    • 2008
  • We studied the properties of vapor flux distributions of nozzle shaped thermal evaporation sources and the factors, which can change the flux distributions such as nozzle structure. We used a simulation and experiment methods for this study. By using the results of our study, we improved the Circular Nozzle Source, which can make uniform thin films without substrate rotation, into more efficient source.

  • PDF

OLED Equipment for Next Generation using High Efficiency Evaporation Method (고효율 Evaporation법을 이용한 차세대 OLED 증착기)

  • Park, Yeong-Ho;Kim, Jong-Un
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.12-13
    • /
    • 2007
  • OLED는 유기물을 이용한 진공 증발 증착법(Evaporation)에 의해 제조하고 있으며, 2세대 기판을 사용하고 있는 현재의 개념으로는 유기물 증착 효율이 수 %에 그치고 증착속도도 수 A/s로 상당히 낮다. OLED 제조의 생산성을 향상하기 위해서 증착속도로 10A/s이상, 제조 단가를 줄이기 위해 재료의 효율도 30% 이상으로 향상시킬 수 있었다.

  • PDF

Performance Change of Gas Turbine with a Evaporation Cooling System in Summer Season (하절기 기화냉각장치 설치에 따른 가스터빈 성능변화)

  • Chung, Hyeon-Jo;Yoo, HoSeon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • This study analyzed the change of gas turbine performance with air temperature decrease by the evaporation cooling system in summer season. Gas turbine performance was tested on the condition that ambient temperature is $29{\pm}1^{\circ}C$. As a result, Air temperature at the compressor inlet was decreased by $4.12^{\circ}C$ after the installation of evaporation cooling system. Decreased air temperature followed by increased air density affected gas turbine performance, Which increased compressor pressure ratio by 0.27, improved compressor efficiency of 0.29 %p, improved gas turbine enthalpy drop efficiency of 0.31 %p, improved the gas turbine efficiency by 0.44 %p, improved electric power output by 4,489 kW. On the other side, the influence of the humidity increase and flow resistance increase was negligible.

  • PDF

A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load (응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구)

  • Choi, Seung-Il;Ji, Myoung-Kuk;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

Combustion Characteristics of Cylindrical Premixed Combustor using Liquid Fuel by Self Evaporation (자열증발된 액체연료를 적용한 원통형 예혼합 연소기의 연소특성)

  • Lee, Pil Hyong;Song, Ki Jong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.7-15
    • /
    • 2016
  • The fuel in conventional liquid fuel combustor is atomized by spray method for high efficiency and low emissions. To improve the overall fuel efficiency and lower pollutant emissions in liquid fuel combustion systems, the effective spatial and temporal separation of droplet evaporation from normal spray process is needed. In this paper, the recuperation of high temperature burnt gas for fuel evaporation was proposed to develop a cylindrical premixed combustor. The recuperation process using U shaped tube is effective to evaporate the liquid fuel. The results show that the flame mode is changed into red radiation flame, blue flame and lift off flame with decreasing equivalence ratio as gas fuel combustion mode. In particular, the blue flame is found to be very stable at heating load 9.2 kW and equivalence ratio 0.731. NOx was measured blow 105 ppm ($O_2$ zero base) from equivalence ratio 0.705 to 0.835. CO which is a very important emission index in liquid fuel combustor was observed below 5 ppm ($O_2$ zero base) under the same equivalence region.

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).