• Title/Summary/Keyword: evaporation heat

Search Result 619, Processing Time 0.028 seconds

Heat Evaluation System in Concrete Considering Evaporation Heat (기화열을 고려한 콘크리트의 온도평가시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.604-611
    • /
    • 2015
  • When the moisture in concrete member evaporates by high temperature, the evaporation heat which absorbs surrounding temperature occurs. The incremental rate of the internal temperature in concrete is reduced due to the evaporation heat in spite of continuously increasing external temperature. Therefore, this paper has proposed the evaluation algorithm for predicting the internal temperature of concrete members considering the evaporation heat under the high temperature. Finite element method is employed to facilitate thermal analysis for any position of member. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test results of other researchers. The proposed algorithm shows a good agreement with the experimental results including the phenomenon that temperature is lost by the evaporation heat.

Characteristic of Evaporation Cooling in Water Droplet Impinging on Steel with Various Surface Roughness and Droplet Diameter (강에서 표면조도의 변화와 액적 직경에 따른 충돌 액적 증발 냉각 특성)

  • Jang, C.S.;Sohn, C.H.;Chung, S.W.;Choi, W.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.141-148
    • /
    • 2006
  • An experimental study is presented for water droplet impingement on a steel surface in the process of heat treatment. The objective of the present work is to examine characteristic of evaporation cooling due to surface roughness and droplet diameter under conductive heat input condition. The surface temperatures varied from $80{\sim}155^{\circ}C$, surface roughness was from $R_a=0.12{\mu}m$ to $R_a=1.14{\mu}m$ and droplet diameter was from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness and the smaller droplet size, the time average heat flux has maximum value for the larger surface roughness and the smaller droplet size. The total evaporation time has not influence on the nuclear boiling region.

Heat Transfer Analysis of Concrete Members Considering Evaporation Heat under High Temperature (고온 하에서 기화열을 고려한 철근콘크리트 부재의 온도해석)

  • Lee, Taegyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.355-363
    • /
    • 2009
  • When water inside the concrete member evaporates by high temperature, the evaporation heat which absorbs surrounding temperature occurs. The rate of increment of the internal temperature in concrete is reduced due to the evaporation heat in spite of continuously increasing external temperature. In this paper, the prediction method of internal temperature of concrete members considering the evaporation heat under the high temperature is presented. Finite element method is employed to facilitate thermal analysis for any position of member. And the thermal characteristics models of high strength concrete affected by high temperature are proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test results of other researchers. The proposed algorithm shows a good agreement with the experimental results including the phenomenon that temperature is lost by the evaporation heat.

Investigation on the Cooling Characteristics of a Regenerative Evaporation Water Cooler (재생증발식 수냉각기의 냉각성능 해석)

  • Choi Bong-Su;Hong Hi-Ki;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.393-401
    • /
    • 2006
  • The regenerative evaporation water cooler is devised and analysed in this study. The regenerative evaporation water cooler is composed of a sensible heat exchanger to cool the incoming air, followed by a latent heat exchanger to cool the water evaporatively with the cooled air flowing out of the sensible heat exchanger. By linearizing psychrometric characteristics, the heat and mass transfer in the regenerative evaporation water cooler is analyzed theoretically. The results show that the water can be cooled down even lower than the wet-bulb temperature of the inlet air. When the inlet air is $32^{\circ}C$ and 20% in relative humidity, and the inlet temperature of the water is $20^{\circ}C$, the regenerative evaporation water cooler provides a larger cooling capacity than the conventional evaporation water cooler if the effectiveness of the latent heat exchanger is higher than 0.6 and that of the sensible heat exchanger is higher than 0.5.

Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube (세관내 이산화탄소의 증발 열전달 및 압력강화)

  • Jang, Seong-Il;Choi, Sun-Muk;Kim, Dae-Hui;Park, Ki-Won;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF

Experimental study on Effects of POE oil on R134a Evaporation Heat Transfer in Plate Heat Exchanger (판형열교환기에서 POE오일이 R134a 증발 열전달에 미치는 영향에 대한 실험적 연구)

  • Chang, Young Soo;Jang, Jae Kyoo;Kang, Byung Ha;Kim, Sukhyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.255-262
    • /
    • 2014
  • To investigate the effect of oil on evaporation heat transfer of plate heat exchanger, evaporation heat transfer experiment was carried out using experimental apparatus for micro gear pumped R134a-oil circulation. By varying oil circulation rate of POE oil from 0 to 5%, evaporation heat transfer performance of plate heat exchanger was investigated. As OCR(Oil Circulation Ratio) increases, the evaporation heat transfer coefficient of R134a decreases and pressure drop increases. When the evaporating temperature is $30^{\circ}C$ and the refrigerant mass flow rate is 80 g/s, evaporation heat transfer rate decreases by 10 % and pressure drop increases by 10% at 2% of OCR condition.

Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube (수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

The characteristics of heat transfer coefficient for falling-film evaporation on a horizontal tube with aqueous LiBr solution (LiBr 수용액의 수평관 유하액막 증발에 있어서의 열전달계수 특성)

  • Ji, Yong-Hae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.294-302
    • /
    • 1997
  • Falling-film evaporation experiments for aqueous solution of lithium bromide (LiBr) were performed on a horizontal smooth 19.05-mm-dia copper tube. Average heat transfer coefficients were obtained with varied film Reynolds numbers, system pressures, LiBr concentrations and degrees of wall superheat. Heat transfer coefficients increase with increasing system pressure and decreasing concentration. For degrees of wall superheat, the heat transfer coefficient did not't show the distinct trend. For this experimental ranges, heat transfer coefficients showed maximum values at an optimal film Reynolds number. The results of this work were compared with pool boiling data reported previously, and it was shown that the heat transfer performance is superior to the pool boiling.