Characteristic of Evaporation Cooling in Water Droplet Impinging on Steel with Various Surface Roughness and Droplet Diameter

강에서 표면조도의 변화와 액적 직경에 따른 충돌 액적 증발 냉각 특성

  • Jang, C.S. (School of Mechanical Engineering, Kyungpook National University) ;
  • Sohn, C.H. (School of Mechanical Engineering, Kyungpook National University) ;
  • Chung, S.W. (School of Biosystems Engineering, Pusan National University) ;
  • Choi, W.S. (School of Biosystems Engineering, Pusan National University)
  • 장충선 (경북대학교 기계공학부) ;
  • 손창현 (경북대학교 기계공학부) ;
  • 정성원 (부산대학교 바이오시스템공학부) ;
  • 최원식 (부산대학교 바이오시스템공학부)
  • Received : 2006.04.24
  • Accepted : 2006.05.16
  • Published : 2006.05.30

Abstract

An experimental study is presented for water droplet impingement on a steel surface in the process of heat treatment. The objective of the present work is to examine characteristic of evaporation cooling due to surface roughness and droplet diameter under conductive heat input condition. The surface temperatures varied from $80{\sim}155^{\circ}C$, surface roughness was from $R_a=0.12{\mu}m$ to $R_a=1.14{\mu}m$ and droplet diameter was from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness and the smaller droplet size, the time average heat flux has maximum value for the larger surface roughness and the smaller droplet size. The total evaporation time has not influence on the nuclear boiling region.

Keywords

References

  1. H. Dawson and M. Di Marzo, NIST-GCR, (1993) 93-624
  2. D. D. Hall and I. Mudawar, Int. J. of Heat Mass Transfer, 38 (1995) 1201-1216 https://doi.org/10.1016/0017-9310(94)00244-P
  3. D. D. Hall and I. Mudawar, ASME J. Heat Transfer, 117 (1995) 479-488 https://doi.org/10.1115/1.2822547
  4. J. Kistemajer, Physial, 29 (1963) 96-104
  5. Z. Tamura and Y. Tanasawa, 7th Symposium (International) on Combustion, London and Oxford, (1958) 509-522
  6. B. S. Gottfried, C. J. Lee and K. J. Bell, Int. J. of Heat mass Transfer, (1966) 1167-1187
  7. K. J. Baumeister and F.F Simon, J. of Heat Transfer, (1973) 166-173
  8. G. S. Emmerson, Int. J. Heat Mass Transfer, 18 (1975) 381-386 https://doi.org/10.1016/0017-9310(75)90027-7
  9. J. Rizza, J of Heat Transfer, 103 (1981) 501-507 https://doi.org/10.1115/1.3244492
  10. K. Makino and I. Michiyoshi, Int. J. of Heat Mass Transfer, 30 (1989) 1895-1905 https://doi.org/10.1016/0017-9310(87)90249-3
  11. S. Kline and F. A. McClintok, Mechanical Engineering, Jan, (1953) 3-8
  12. R. J. Moffat, J. of Fluids Engineering, 107 (1985) 173-182 https://doi.org/10.1115/1.3242452
  13. R. J. Moffat, Experimental Thermal and Fluid Science, 1 (1988) 3-17 https://doi.org/10.1016/0894-1777(88)90043-X
  14. I. Michiyoshi and K. Makino, Int. J. of Heat Mass Transfer, 21 (1978) 605-613 https://doi.org/10.1016/0017-9310(78)90057-1
  15. T. Jonas, A. Kubitzek and F. Obermeier, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, (1997) 1263-1270
  16. 최국광,대한기계학회지, 21-1 (1981) 56-60