DOI QR코드

DOI QR Code

판형열교환기에서 POE오일이 R134a 증발 열전달에 미치는 영향에 대한 실험적 연구

Experimental study on Effects of POE oil on R134a Evaporation Heat Transfer in Plate Heat Exchanger

  • 장영수 (국민대학교 발효융합학과) ;
  • 장재규 (국민대학교 대학원 기계공학과) ;
  • 강병하 (국민대학교 기계시스템공학부) ;
  • 김석현 (국민대학교 기계시스템공학부)
  • Chang, Young Soo (Dept. of Advanced Fermentation Fusion Science and Technology, Kookmin Univ.) ;
  • Jang, Jae Kyoo (Dept. of Mechanical Engineering, Graduate School, Kookmin Univ.) ;
  • Kang, Byung Ha (School of Mechanical Systems Engineering, Kookmin Univ.) ;
  • Kim, Sukhyun (School of Mechanical Systems Engineering, Kookmin Univ.)
  • 투고 : 2013.11.12
  • 심사 : 2014.01.03
  • 발행 : 2014.03.01

초록

판형열교환기의 증발과정에서 오일에 위한 영향을 알아보기 위해 마이크로 기어 펌프를 이용한 냉매-R134a 순환 성능실험 장치를 구성하여, 증발열전달 실험을 수행하였다. POE 오일을 펌프를 이용하여 냉매 질량 유량에 비례하도록 0~5%를 첨가하여, 오일순환량에 따른 열전달계수 변화를 측정하였다. 오일순환율이 증가할수록 R134a 증발 열전달계수는 감소하며, 압력손실은 증가한다. 질량유량 80 g/s, 증발 온도 $30^{\circ}C$ 일 때, 오일 순환율 2%조건에서 무오일 대비 약 10%의 열전달계수가 감소하였고, 압력손실은 약 10% 증가하였다.

To investigate the effect of oil on evaporation heat transfer of plate heat exchanger, evaporation heat transfer experiment was carried out using experimental apparatus for micro gear pumped R134a-oil circulation. By varying oil circulation rate of POE oil from 0 to 5%, evaporation heat transfer performance of plate heat exchanger was investigated. As OCR(Oil Circulation Ratio) increases, the evaporation heat transfer coefficient of R134a decreases and pressure drop increases. When the evaporating temperature is $30^{\circ}C$ and the refrigerant mass flow rate is 80 g/s, evaporation heat transfer rate decreases by 10 % and pressure drop increases by 10% at 2% of OCR condition.

키워드

과제정보

연구 과제 주관 기관 : 에너지기술평가원

참고문헌

  1. Lee J. G., 2010, "Effects of PAG oil on the Performance of Gascooler in a Carbon Dioxide Heat Pump," Master's Thesis of Korea University.
  2. Cho, K. and Tae, S.-J., 2000, "Evaporation Heat Transfer for R-22 and R-407C Refrigerant-Oil Mixture in a Microfin Tube with a U-Bend," International Journal of Refrigeration, Vol. 23, pp.219-231. https://doi.org/10.1016/S0140-7007(99)00051-1
  3. Wei, W., Ding, G., Hu, H. and Wang, K., 2007, "Influence of Lubricant oil on Heat Transfer Performance of Refrigerant Flow Boiling Inside Small Diameter Tubes. Part I: Experimental Study," Experimental Thermal and Fluid Science, Vol. 32, pp. 67-76. https://doi.org/10.1016/j.expthermflusci.2006.10.012
  4. Hu, H., Ding, G. and Wang, K., 2008, "Heat Transfer Characteristics of R410A-Oil Mixture Flow Boiling Inside a 7 mm Straight Micro Fin Tube," International Journal of Refrigeration, Vol. 31, pp. 1081-1093. https://doi.org/10.1016/j.ijrefrig.2007.12.004
  5. Briggs, D. E. and Young, E. H., 1969, "Modified Wilson Plot Techniques for Obtaining Heat Transfer Correlations for Shell and Tube Heat Exchangers," Chem. Eng. Progr. Symp. Ser.,No. 92, Vol. 65, pp.35-45.
  6. Edwards. M. F., 1974, "Heat Transfer and Pressure Drop Characteristics of a Plate Heat Exchanger Using Newtonian and Non-Newtonian Liquids," The Chemical Engineering, Vol. 259, No. 1, pp. 286-288
  7. Cremaschi, L., Hwang Y. and Radermacher, R., 2005, "Experimental Investigation of Oil Retention in Air Conditioning Systems," International Journal of Refrigeration, Vol. 28, pp. 1018-1028. https://doi.org/10.1016/j.ijrefrig.2005.03.012
  8. ASHRAE, 2002, ASHRAE Handbook-Refrigeration, American Society of Heating, Refrigerating, and Air- Conditioning Engineers, Inc., Ch 7, pp. 7.1-7.6
  9. Hsieh, Y. Y. and Lin, T. F., 2002, "Saturated Flow Boiling Heat Transfer and Pressure Drop of Refrigerant R-410A in a Vertical Plate Heat Exchanger," International Journal of Heat and Mass Transfer, Vol. 45, pp. 1033-1044. https://doi.org/10.1016/S0017-9310(01)00219-8