• 제목/요약/키워드: evaporating method

검색결과 173건 처리시간 0.022초

박막두께 예측을 위한 증착 공정 모델링에 관한 연구 (Study on Evaporating Process Modeling for Estimation of Thin-film Thickness Distribution)

  • 이응기;이동은;김숙한
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 춘계학술대회
    • /
    • pp.156-159
    • /
    • 2006
  • In order to design an evaporation system, geometric simulation of film thickness distribution profile is required. In this paper, a geometric modeling algorithm is introduced for process simulation of the evaporating process. The physical fact of the evaporating process is modeled mathematically. Based on the developed method, the thickness of the thin-film layer can be successfully controlled.

  • PDF

각종증착금속면의 응축열전달에 관한 연구 (A Study on Condensation Heat Transfer to Some Evaporated Metal Surface)

  • 조시기;이기우;박영재;조명재
    • 대한설비공학회지:설비저널
    • /
    • 제15권2호
    • /
    • pp.188-195
    • /
    • 1986
  • Condensation heat transfer can be classified in dropwise condensation and filmwise condensation, and for the industrial purpose, the former is more useful than the latter because of the higher heat transfer rate. But it is difficult to maintain the dropwise condensation continuously since most of the metal surfaces become wetted after exposure to a condensing vapor over an extended period of time. To maintain dropwise condensation continuously , various surface coatings and promoters have been used recently, but these methods must be reconsidered about the durability of condensing surface. Therefore, in this study, evaporating method of various pure metals on the condensing surface has been performed to maintain dropwise condensation. The results have showed that the heat transfer rate of silver evaporating surface is higher than any other metal evaporating in dropwise area. Transition temperature and filmwise condensation curves are uniform regardless of kinds of evaporating metals.

  • PDF

주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

정상 할로우 콘 분무와 환형 공기 제트의 상호작용에 관한 수치적 연구 (Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet)

  • 김우태;허강열
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.43-52
    • /
    • 2000
  • Numerical simulation of steady, non-evaporating hollow-cone sprays interacting with concentric annular air jets is performed using the discrete stochastic particle method in KIVA. The spray characteristics such as SMD, mean droplet velocity, liquid volume flux, air/liquid mass ratio, and droplet number density arc obtained and compared with the measurements involving different air flow rates in large and small annuli. Overall satisfactory agreement is achieved between calculation and experiment except for the deviation in the downstream SMD arising from uncertainty in the size distribution function at injection, and inaccuracy in the averaged spray parameters due to the small volumes of axisymmetric 2-D sector meshes close to the axis.

  • PDF

마늘 풍미유의 휘발성 향기 성분의 변화 (Changes of Volatile Flavor Components in Garlic-Seasoning Oil)

  • 구본순;안명수;이기영
    • 한국식품과학회지
    • /
    • 제26권5호
    • /
    • pp.520-525
    • /
    • 1994
  • 마늘 풍미유를 합리적으로 제조하는 방법을 개발하기 위하여 Autoclaving Method와 Evaporating Method에 의하여 corn salad oil에 마늘을 raw, flake, extract 형태로 전체 중량의 40%(w/w) 첨가하여 제조하였다. 이들 마늘 풍미유를 항온저장($40{\pm}2^{\circ}C$) 및 가열처리($185{\pm}2^{\circ}C$) 하면서 경시적으로 휘발성 향기 성분의 변화를 측정하여 AM 및 E'M의 적합성 및 유효성을 고찰한 결과는 다음과 같았다. 마늘 풍미유의 주요 향기성분 중 propane, pentane, diallyl disulfide, methyl allyl trisulfide, diallyl trisulfide 등은 경시적으로 감소현상을 보였으나 carbonyl인 propenal과 hexanal은 증가 추세를 보였다. 항온저장($40{\pm}2^{\circ}C$)시 형태별 총 향기 성분 함량은 raw>extract>flake의 순으로 나타났으나 향기 안정성은 AM 처리시raw>flake>extract 첨가군의 순서로 나타났으며 E'M 처리시에는 첨가 마늘의 형태별로는 뚜렷한 차이를보이지 않았다. 가열처리($185{\pm}2^{\circ}C$)시 형태별 향기 성분 함량은 항온 저장시와 동일하였으며 잔류율은 항온 저장시와는 달리 flake>raw>extract의 순으로 안정한 것으로 나타났으며 그 정도는 매우 미약하였다. E'M으로 제조된 풍미유의 향기 성분은 AM으로 제조된 풍미유의 향기 성분의 66.1% 수준으로 그 함량이 낮았으나 항온 저장시나 가열 처리시 이들의 함량 변화는 서로 유사한 경향을 나타내었다. 위의 결과에서 AM, E'M에 의해 제조된 마늘 풍미유는 마늘의 독특한 풍미를 보유하면서 상온 저장시에 상당한 기간동안 안정한 상태를 유지할 수 있을 것으로 보아 AM 및 E'M은 풍미유 제조에 합리적인 방법인 것으로 사료된다.

  • PDF

수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달 (Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube)

  • 박기원;오후규
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

표면플라즈몬공명 가시화 장치를 이용한 증발하는 이종혼합물 액적의 실시간 농도 가시화 기법 개발 (Development of the Real-time Concentration Measurement Method for Evaporating Binary Mixture Droplet using Surface Plasmon Resonance Imaging)

  • 정찬호;이형주;최창경;이형순;이성혁
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.212-218
    • /
    • 2021
  • The present study aims to develop the Surface Plasmon Resonance (SPR) imaging system facilitating the real-time measurement of the concentration of evaporating binary mixture droplet (BMD). We introduce the theoretical background of the SPR imaging technique and its methodology for concentration measurement. The SPR imaging system established in the present study consists of a LED light source, a polarizer, a lens, and a band pass filter for the collimated light of a 589 nm wavelength, and a CCD camera. Based on the Fresnel multiple-layer reflection theory, SPR imaging can capture the change of refractive index of evaporating BMD. For example, the present study exhibits the visualization process of ethylene glycol (EG)-water (W) BMD and measures real-time concentration change. Since the water component is more volatile than the ethylene glycol component, the refractive index of EG-W BMD varies with its mixture composition during BMD evaporation. We successfully measured the ethylene glycol concentration within the evaporating BMD by using SPR imaging.

대면적 유기EL 양산 장비 개발을 위한 증착 공정 모델링 (Evaporation Process Modeling for Large OLED Mass-fabrication System)

  • 이응기
    • 반도체디스플레이기술학회지
    • /
    • 제5권4호
    • /
    • pp.29-34
    • /
    • 2006
  • In order to design an OLED(Organic Luminescent Emitting Device) evaporation system, geometric simulation of film thickness distribution profile is required. For the OLED evaporation process, thin film thickness uniformity is of great practical importance. In this paper, a geometric modeling algorithm is introduced for process simulation of the OLED evaporating process. The physical fact of the evaporating process is modeled mathematically. Based on the developed method, the thickness of the thin-film layer can be successfully controlled.

  • PDF

영광 3&4와 5&6호기에서 액체 방사성폐기물 처리방법의 비교 (The Comparison on Treatment Method of Liquid Radioactive Waste in Yonggwang #3&4 and #5&6)

  • Yeom, Yu-Seon;Kim, Soong-Pyung;Lee, Seung-Jin
    • 방사성폐기물학회지
    • /
    • 제2권3호
    • /
    • pp.219-230
    • /
    • 2004
  • Most of the low-level liquid radioactive wastes generated from PWR plants are classified into high or low total suspended solid(HTDS or LTDS), and into radiochemical and radioactive laundry waste. Although the evaporation process has a high decontami- nation ability, it has several problems such as corrosion, foam, and congestion. A new liquid waste disposal process using the ion-exchange demineralizer(IED), instead of the current evaporation process, has been introduced into the Yonggwang NPP #5 and 6. These two methods have been compared to understand the differences in this study. Aspects compared here were the released radioactivity amount of the liquid radioactive wastes, the dose of off-site residents, the decontamination factor, and the amount of the solid radioactive wastes. The IED system is designed to discharge higher radioactivity about 20% than the evaporating system, and the actual radioactivity released from the evaporating and IED system were 0.473mCi and 1.098mCi, respectively. The radioactivity released from the IED was 2.32 times higher than that of the evaporating system. The dose of off-site residents was $2.97{\times}10^{-6}$mSv for the evaporating system, and $6.47{\times}10^{-6}$mSv for IED. The decontamination factor(DF) of the evaporator is, in most cases, far lower than the lower limits of detection(LLD) with the Ge-Li detector. Due to the low concentration of the liquid wastes collected from the liquid waste system, the decontamination factor of IED is very low. Since there is not enough data on the amount of solid radioactive wastes generated by the evaporation system, the comparison on these two systems has been conducted on the basis of the design, and the comparison result was that the evaporating system generated more wastes about 40% than IED.

  • PDF

주위조건 변화에 대한 증발 디젤분무 거동특성 연구 (Study on the Behavior Characteristics of the Evaporative Diesel Spray under Change in Ambient Conditions)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.454-460
    • /
    • 2009
  • To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Then the effects of change in density of ambient gas on spray structure in high temperature and pressure field have been investigated in this study. The ambient gas density was changed from ${\rho}_a=5.0kg/m^3$ to ${\rho}_a=12.3kg/m^3$ with CVC(Constant Volume Chamber). Also, simulation study by modified KIVA-II code was conducted and compared with experimental results. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas. The spatial structure of a diesel spray can be verified as 2-regions consisted of liquid with momentum decrease and vapor with large-scale vortex. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.