• Title/Summary/Keyword: evaluation of applicability

Search Result 1,516, Processing Time 0.037 seconds

Assessment of Liquefaction Potential Using Correlation between Shear Wave Velocity and Normalized LPI on Urban Areas of Seoul and Gyeongju (정규화LPI와 전단파 속도의 상관관계를 활용한 서울과 경주 지역 액상화 위험도 평가)

  • Song, Young Woo;Chung, Choong Ki;Park, Ka Hyun;Kim, Min Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.357-367
    • /
    • 2018
  • Recent earthquakes in Gyeongju and Pohang have raised interest in liquefaction in South Korea. Liquefaction, which is a phenomenon that excessive pore pressure is generated and the shear strength of soil is decreased by repeated loads such as earthquakes, causes severe problems such as ground subsidence and overturning of structures. Therefore, it is necessary to identify and prepare for the possibility of liquefaction in advance. In general, the possibility of liquefaction is quantitatively assessed using the Liquefaction Potential Index (LPI), but it takes a lot of time and effort for performing site response analysis which is essential for the liquefaction evaluation. In this study, a simple method to evaluate the liquefaction potential without executing the site response analysis in a downtown area with a lot of borehole data was proposed. In this simple method, the correlation between the average shear wave velocity of the target location ground and the LPI divided by thickness of liquefiable layer was established. And the applicable correlation equation for various rock outcrop accelerations were derived. Using the 104 boreholes information in Seoul, the correlation equation between LPI and the shear wave velocity (ground water level: 0m, 1m, 2m, 3m) is obtained and the possibility of liquefaction occurrence in Seoul and Gyeongju is evaluated. The applicability of the proposed simple method was verified by comparing the LPI values calculated from the correlation equation and the LPI values derived using the existing site response analysis. Finally, the distribution map of LPI calculated from the correlation was drawn using Kriging, a geostatistical technique.

A Study on the Applicability of Chinese Steamed Dumpling with Korean Food Stuffing - Focusing on Jiangsu Residents - (중국 만두소의 한국음식 적용가능성 연구 - 중국 강소성 지역 주민을 대상으로 -)

  • Wu, Di;Joo, Nami
    • Korean journal of food and cookery science
    • /
    • v.31 no.3
    • /
    • pp.344-351
    • /
    • 2015
  • The purpose of this study is to improve Korean food market competitiveness in China, and to develop product diversity. Therefore, the paper will discuss and analyze the feasibility of combining Korean and Chinese cuisines. The paper is based on a SPSS-analyzed survey of 255 Jiangsu residents focusing on the concept of breakfast, and the recognition of and preference for Korean food. The result showed a high level of eating out for breakfast in Jiangsu province and the expectation of many options. The respondents generally preferred porridge, steamed stuffed dumplings, noodles and other options that are relatively convenient. Korean foods such as bulgogi, samgyeopsal, tteokbokki and bibimbap generally enjoyed a high degree of recognition and preference. This study selected bulgogi, jeyukbokkeum, dakgalbi and japchae as the stuffings for steamed dumplings and an evaluation of sensory attributes including saltiness, sweetness, spiciness, and gravy was conducted using 30 professionals. Relatively high scores were recorded in all aspects. Compared with the reference product, the dumplings with Korean food stuffing achieved higher scores. As a new development and attempt, the steamed dumplings with Korean food filling evaluated during this test demonstrated feasibility and enormous market potential. The study provides a new direction and reference value for the Chinese breakfast market and for the penetration of Korean food into the Chinese market.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Acute Kidney Injury Models: Focus on the Therapeutic Effects of Stem Cell in Preclinical Approach (줄기세포 연구를 위한 급성신장손상 모델)

  • Nam, Hyun-Suk;Woo, Jae-Seok;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.533-539
    • /
    • 2010
  • Stem cell-based therapy is under intensive investigation to treat acute renal failure (ARF). The purpose of this study was to evaluate available ARF models, and suggest a model appropriate to therapeutic evaluation of the stem cells in preclinical approach by determining the optimum concentration of nephrotoxic agents and duration of ischemia induction. Three different types of available acute kidney injury (AKI) animal models were analyzed using rats: Cisplatin (saline, 5 and 7.5 mg/kg, IP) or glycerol (saline, 8 and 10 ml/kg, IM)-induced nephrotoxicity as toxic models and ischemia-induced (sham, 35 and 45 minutes) nephropathy as an ischemic model. The relevance and applicability to investigate especially the regenerative ability of stem cells were evaluated regarding morphology, renal function and survival at this time point. In the point of renal function, 10 ml glycerol/kg and 7.5 mg cisplatin/kg model in toxic models and 45 min model in ischemia models showed significant decrease for the longer observation time compared to 8 ml glycerol/kg, 5 mg cisplatin/kg and the 35 min ischemia models, respectively. All groups were observed no mortality except 45 min-ischemia model with 50% survival. Histological significant alterations including cast formation in the tubular lumen, tubular necrosis and apoptosis were revealed on the second day in either ischemiaor glycerol-induced models, and on day 5 in cisplatin-induced models. The results indicate that ischemia 35 min-, cisplatin 7.5 mg/kg- and glycerol 10 ml/kg-induced AKI would be ideal animal models to monitor a outcome parameter related to the therapeutic effects on renal function with noninvasive techniques in the same animal at multiple time points. Our findings also suggest that the best time points for the functional or histological interpretation of renal will be on day 2 in both glycerol- and ischemia-induced AKI models and on day 5 in cisplatin-induced AKI.

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

Evaluation of cellular energy allocation (CEA) in the Manila clam, Ruditapes philippinarum as a tool for assessment of contaminated sediments (오염 퇴적물 평가 기법으로서의 바지락 (Ruditapes philippinarum) 세포내 에너지 할당 (cellular energy allocation, CEA) 적용성 검토)

  • Sung, Chan-Gyoung;Kang, Sin-Kil;Chung, Jiwoong;Park, Dong-Ho;Lee, Jong-Hyeon;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • To evaluate the applicability of cellular energy allocation (CEA) in the bivalves as a biomarker for the assessment of environmental contamination, the energy contents and energy consumption in several tissues of the Manila clam, Ruditapes philippinarum were analyzed. The contents of lipid, glucose, protein and electron transport system (ETS) activity in the foot, siphons, gills, and body of R. philippinarum exposed to crude oil-spiked sediments were measured at 1, 2, 4, 7, 10 days after exposure. The reserved energy (energy available, EA) in the lipid, glucose and protein decreased as contamination level and exposure time increased. In contrast, the ETS activity (energy consumed, EC) showed the reverse tendency. The order of available energy contents were foot > siphons > gill > body. Significant differences in both EA and EC were found only at the highest contamination level (58.3 mg TPAHs/kg DW). EA decreased significantly in the foot and gill at 1 day, in the body at 2 and 7 days after exposure. EC increased significantly in the body at 4 days after exposure. CEA showed higher sensitivity to the contamination than EA or EC. Especially, CEA in the foot and body decreased significantly at lower ranges of contamination level (as low as 6.5 mg TPAHs/kg DW) during 1 to 7 days after exposure. The CEA is more useful than EA or EC alone for the assessment of sediment contamination at lower level that acute toxicity could not be detected. CEA analyses in the body of R. philippinarum after 4 days' exposure to contaminated sediments seem to be the most sensitive and reliable.

Comparative Analysis of STS contents on the Next Generation Science Textbook and High School Science Textbooks Focused on the Earth Science (차세대 과학 교과서와 기존 과학 교과서의 STS 교육내용 비교 분석 -지구과학 영역을 중심으로-)

  • Hyun, Jiyong;Park, Shingyu;Kim, Jungwook;Chung, Wonwoo
    • Journal of Science Education
    • /
    • v.32 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this study was to analyze about STS contents in the next generation science textbook for 10th grade according to curriculum revision 2007 and high school science textbooks focused on the Earth Science which were published according to the 7th curriculum. The contents of STS were analyzed by the STS topics of Yager(1989), Piel's standard(1981), and student activities by SATIS. The results of this study are the same as follows: 'The next generation science textbook' was shown that 20.9% is STS material amount in average by Yager's standard. 'High school science textbooks' were shown that 11.3% is STS material amount in average. Based on the STS topics by Yager's standard, most of STS content is focused on 'Relativity with local community', 'Application of science' and 'Cooperative work on real problems'. However, there is rare contents such as 'Multiple dimensions of science', 'Practice with decision-making strategies' and 'Evaluation concerned for getting and using information' in the next generation science textbook. In high school science textbooks were shown that 'Applicability of science' is the highest and 'Relativity with local community' is the next high contents. Based on the STS topics by Piel's standard, most of STS contents are focused on 'Environmental quality', 'Space research' and 'National defence' in the next generation science textbook. But high school science textbooks are focused on 'Natural resources' and 'Technology development'. The activities were analyzed by SATIS student activities. The major categories of activities included in the next generation science textbook were 'Investigation', 'Simulation' and 'Data analysis'. But, there were rare activities like 'Roleplaying', 'Research design' and 'Simulation' in high school science textbooks.

  • PDF

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.