Acute Kidney Injury Models: Focus on the Therapeutic Effects of Stem Cell in Preclinical Approach

줄기세포 연구를 위한 급성신장손상 모델

  • Nam, Hyun-Suk (Stem Cell Institute and School of Veterinary Medicine, Kangwon National University) ;
  • Woo, Jae-Seok (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Woo, Heung-Myong (Stem Cell Institute and School of Veterinary Medicine, Kangwon National University)
  • 남현숙 (강원대학교 수의과대학 외과교실) ;
  • 우재석 (수의과학검역원) ;
  • 우흥명 (강원대학교 수의과대학 외과교실)
  • Accepted : 2010.09.30
  • Published : 2010.10.30

Abstract

Stem cell-based therapy is under intensive investigation to treat acute renal failure (ARF). The purpose of this study was to evaluate available ARF models, and suggest a model appropriate to therapeutic evaluation of the stem cells in preclinical approach by determining the optimum concentration of nephrotoxic agents and duration of ischemia induction. Three different types of available acute kidney injury (AKI) animal models were analyzed using rats: Cisplatin (saline, 5 and 7.5 mg/kg, IP) or glycerol (saline, 8 and 10 ml/kg, IM)-induced nephrotoxicity as toxic models and ischemia-induced (sham, 35 and 45 minutes) nephropathy as an ischemic model. The relevance and applicability to investigate especially the regenerative ability of stem cells were evaluated regarding morphology, renal function and survival at this time point. In the point of renal function, 10 ml glycerol/kg and 7.5 mg cisplatin/kg model in toxic models and 45 min model in ischemia models showed significant decrease for the longer observation time compared to 8 ml glycerol/kg, 5 mg cisplatin/kg and the 35 min ischemia models, respectively. All groups were observed no mortality except 45 min-ischemia model with 50% survival. Histological significant alterations including cast formation in the tubular lumen, tubular necrosis and apoptosis were revealed on the second day in either ischemiaor glycerol-induced models, and on day 5 in cisplatin-induced models. The results indicate that ischemia 35 min-, cisplatin 7.5 mg/kg- and glycerol 10 ml/kg-induced AKI would be ideal animal models to monitor a outcome parameter related to the therapeutic effects on renal function with noninvasive techniques in the same animal at multiple time points. Our findings also suggest that the best time points for the functional or histological interpretation of renal will be on day 2 in both glycerol- and ischemia-induced AKI models and on day 5 in cisplatin-induced AKI.

최근 줄기세포를 이용한 재생의학분야의 세포치료 연구가 활발히 진행되고 있으나 상대적으로 복잡한 구조를 갖는 신장에서는 난치성 질환인 급성신부전에 대한 줄기세포 치료의 효과는 아직도 논란의 여지가 많다. 이는 연구자마다 다양한 동물모델을 사용하는 것이 한 원인으로 지적되고 있다. 본 연구에서는 줄기세포의 치료효과 분석을 위한 최적의 동물모델 조건을 확립하고자 한다. 쥐를 사용하여 세 종류의 급성신장손상모델을 다음과 같이 다양한 농도와 조건에서 분석하였다: glycerol (대조군, 8 ml/kg, 10 ml/kg), cisplatin (대조군, 5 mg/kg, 10 mg/kg)과 허혈/재관류 (대조군, 35 분 허혈, 45 분 허혈). 줄기세포의 재생능력 평가를 위한 모델의 적합성 정도를 신장손상과 회복의 형태적, 기능적 패턴과 생존률 분석을 통하여 실시하였다. 독성모델인 glycerol과 cisplatin은 각각 10 ml/kg과 7.5 mg/kg 농도에서, 그리고 허혈모델은 45 분 모델에서 대조군 및 다른 비교모델에 비해 장기간의 관찰 기간 동안 신기능의 유의적 차이를 보였다. 또한 45 분 허혈 모델에서 50%의 사망률을 보인 것을 제외하고는 모든 군에서 관찰기간 동안 100% 생존율을 보였다. 조직소견에서 허혈과 glycerol 모델에서는 2일째, cisplatin 모델에서는 5일째 각각 유의적인 조직변화가 관찰되었다. 따라서, 관찰기간 동안 급격한 생존율 감소 없이 안전하고, 조직학적 평가와 신기능에서 대조군과 유의적인 차이를 보이는 cisplatin 7.5 mg/kg, glycerol 10 ml/kg, 35 분 허혈 모델이 치료효과를 평가하기에 적합한 모델로 사료되며, 줄기세포의 세포치료효과 분석에 적합한 급성신장손상 모델로 추천된다.

Keywords

References

  1. Arriero M, Brodsky SV, Gealekman O, Lucas PA, Goligorsky MS. Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Renal Physiol 2004; 287: 621-627. https://doi.org/10.1152/ajprenal.00126.2004
  2. Aydogdu N, Atmaca G, Yalcin O, Batcioglu K, Kaymak K. Effects of caffeic acid phenethyl ester on glycerol-induced acute renal failure in rats. Clin Exp Pharmacol Physiol 2004; 31: 575-579. https://doi.org/10.1111/j.1440-1681.2004.04050.x
  3. Beetham R. Biochemical investigation of suspected rhabdomyolysis. Ann Clin Biochem 2000; 37: 581-587. https://doi.org/10.1258/0004563001899870
  4. Bonventre JV. Mechanisms of ischemic acute renal failure. Kidney Int 1993; 43:1160-1178. https://doi.org/10.1038/ki.1993.163
  5. Broekema M, Harmsen MC, Koerts JA, Petersen AH, van Luyn MJ, Navis G, Popa ER. Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney Int 2005; 68: 2572-2581. https://doi.org/10.1111/j.1523-1755.2005.00728.x
  6. Bussolati B, Tetta C, Camussi G. Contribution of stem cells to kidney repair. Am J Nephrol 2008; 28: 813-822. https://doi.org/10.1159/000137681
  7. Duffield JS, Bonventre JV. Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 2005; 68: 1956-1961. https://doi.org/10.1111/j.1523-1755.2005.00629.x
  8. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV. Restoration of tubular epithelial cells during repair of the post-ischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115: 1743-1755. https://doi.org/10.1172/JCI22593
  9. El-Nahas AM. Plasticity of kidney cells: role in kidney remodeling and scarring. Kidney Int 2003; 64: 1553-1563. https://doi.org/10.1046/j.1523-1755.2003.00255.x
  10. Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello- Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 2007; 72: 430-441. https://doi.org/10.1038/sj.ki.5002334
  11. Heyman SN, Lieberthal W, Rogiers P, Bonventre JV. Animal models of acute tubular necrosis. Curr Opin Crit Care 2002; 8: 526-534. https://doi.org/10.1097/00075198-200212000-00008
  12. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 2003; 112: 42-49. https://doi.org/10.1172/JCI17856
  13. Larbi EB. Drug-inducedrhabdomyolysis: case report. East Afr Med J 1997; 74: 829–831.
  14. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 2005; 115: 1756-1764. https://doi.org/10.1172/JCI23015
  15. Mollura DJ, Hare JM, Rabb H. Stem cell therapy for kidney diseases. Am J Kidney Dis 2003, 42: 891-905. https://doi.org/10.1016/j.ajkd.2003.07.018
  16. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004; 15: 1794-1804. https://doi.org/10.1097/01.ASN.0000128974.07460.34
  17. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344-10349. https://doi.org/10.1073/pnas.181177898
  18. Paller MS. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 1988; 255: 539-544.
  19. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001; 195: 229-235. https://doi.org/10.1002/path.976
  20. Reineck HJ, O'Connor GJ, Lifschitz MD, Stein JH. Sequential studies on the pathophysiology of glycerol-induced acute renal failure. J Lab Clin Med 1980; 96: 357-362.
  21. Rodrigo R, Bosco C, Herrera P, Rivera G. Amelioration of myoglobinuric renal damage in rats by chronic exposure to flavonol-rich red wine. Nephrol Dial Transplant 2004; 19: 2237-2244. https://doi.org/10.1093/ndt/gfh369
  22. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289: 31-42. https://doi.org/10.1152/ajprenal.00007.2005