• Title/Summary/Keyword: evacuation time

Search Result 484, Processing Time 0.04 seconds

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

Analysis of evacuation time for New publicly used establishments according to whether safety facilities, etc. are installed

  • Hong-Sang Lee;Ha-Sung, Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2023
  • In accordance with the revision of "Special act on the safety control of publicly used establishments", this study is aim to measure the change in evacuation time due to whether safety facilities, etc. are installed of a room escape cafe business and kids cafe business(hereinafter referred to as "New publicly used establishments"), which were added as new targets of the publicly used business from June 8, 2022. In the case of new publicly used establishments or publicly used establishments whose owners are changed after the revision of the relevant laws, safety facilities, etc. are installed and maintained under the "Special act on the safety control of publicly used establishments", but in the case of existing businesses that have been operating even before the revision of the law, the business continues without safety facilities, etc. installed because the revised law is not retroactively applied. The purpose of this study is to compare and analyze the change in evacuation time by measuring the evacuation time to operating before the revision of the law to simulate evacuation at existing new publicly used establishments without safety facilities, etc. and measure the evacuation time at new publicly used establishments with safety facilities after the revision of the law

Analysis of the Effect of the Effective width of the Exit of the Evacuation Stairs on the Evacuation Time of the Occupants (피난계단 출입구 유효너비가 수용인원의 피난시간에 미치는 영향 분석)

  • Yang, Sung-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.73-79
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the relationship between the minimum effective width (90cm) of the exit of the evacuation stairway installed in accordance with the Building Act and the evacuation time of all occupants using the corresponding floor from an evacuation point of view. Method: The evacuation simulation (Pathfinder) was used to investigate how the change in doorway width affects the evacuation time of occupants. Result: It was found that as the effective width of the doorway became larger than the minimum standard of 90cm, the evacuation time to the evacuation stairs was shortened. This is also proof that the effective width of the evacuation stair entrance can be appropriately applied differently depending on the number of occupants on the floor. Conclusion: In the future, in order to secure evacuation safety of occupants, it is judged that the effective width standard for the exit of the evacuation stairway considering the total number of occupants by use is necessary. In addition, it is expected that the evacuation efficiency of occupants can be greatly increased if various effective width standards for entrances are made according to the number of occupants by use through research and experiments.

A Numerical Study on the Effects of the Smoke Exhaustion on Safe Evacuation in Emergency Situations during Fires on Ships

  • Kim, Won-Ouk
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.85-89
    • /
    • 2013
  • Sometimes, an evacuation should be executed from a ship for many reasons. This study considers on emergency evacuation on fire in a ship, one of the many reasons for evacuation. Due to the characteristic of fire, the most loss of life is known to be caused by suffocation resulted by smoke. To reduce the suffocation by smoke, the time available for evacuation should be improved for the higher survival rate of crews. In this study, crews' survival times and Evacuation time are analyzed quantitatively in during fire in the same sealed space in two different cases of the natural ventilation and the forced ventilation.

A study on the planning for fire evacuation of the high-rise buildings using the fire evacuation simulator (화재 대피 시뮬레이터를 이용한 초대형 고층 건물의 화재 대피 계획에 관한 연구)

  • Park, Yang-Soo;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.618-620
    • /
    • 2000
  • In case of fire in the high-rise buildings, the appropriate and safe evacuation plans for the building residents are very important to minimize the number of casualties. Since the evacuation time usually depends on the floor plans of the buildings, the evacuation plans should be considered while the architectural design is done. Conventionally, the calculation of the evacuation time in the case of fire breakout is based on the approximate mathematical equations which are prone to error. In this study, the simulator model is developed to help the architectural designers to access the more accurate evacuation time and find out the floor plans which offers the most safe evacuation plans for the residents in case of fire.

  • PDF

A study on the simulator development for fire evacuation of the high-rise buildings (초고층 건물의 화재 대피 시뮬레이터 개발에 관한 연구)

  • 박양수;임동진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.308-308
    • /
    • 2000
  • In case of fire in the high-rise buildings, the appropriate and safe evacuation plans for the building residents are very important to minimize the number of casualties. Since the evacuation time usually depends on the floor plans of the buildings, the evacuation plans should be considered while the architectural design is done. Conventionally, the calculation of the evacuation time in the case of fire breakout is based on the approximate mathematical equations which are prone to error In this study, the simulator model is developed to help the architectural designers to access the more accurate evacuation time and find out the floor plans which offers the most safe evacuation plans for the residents in case of fire.

  • PDF

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

A Study on Fire and Evacuation simulation analysis for use of Disaster Vulnerable Personal Evacuation Device (재난약자 대피 도움장치 활용을 위한 화재 피난 시뮬레이션 분석 연구)

  • Choi, Doo Chan;Hwang, Hyun Soo;Ko, Min Hyeok;Lee, Si Yu
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.824-831
    • /
    • 2020
  • Purpose: In fire case, nursing hospitals are subject to considerable restrictions on evacuation due to the characteristics of occupants and vulnerable elements of buildings, it is important to make evacuation device for vulunerabale person, and need how to intend to increase the efficiency of evacuation by fire and evacuation simulation with helper Method: The smoke characteristics were analyzed by time through fire simulation, finally, the number of helpers according to the day and night was entered, and the evacuation completion time was compared and analyzed using the evacuation simulation. Result: It was found that the evacuation time was shortened by more than 20% when the evacuation assistance device was used for the vulnerable, and the evacuation time was delayed by almost 70% in case of a fire at night compared to the daytime. Conclusion: If the horizontal and vertical evacuation device are effectively utilized in actual fire situations, a strategy appropriate to the situation is deemed necessary. It is expected that evacuation efficiency will increase based on the use of horizontal evacuation evacuation device and vertical evacuation device by developing evacuation manuals

An Optimal Model for Indoor Pedestrian Evacuation considering the Entire Distribution of Building Pedestrians (건물내 전체 인원분포를 고려한 실내 보행자 최적 대피모형)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • Existing pedestrian and evacuation models generally seek to find locally optimal solutions for the shortest or the least time paths to exits from individual locations considering pedestrian's characteristics (eg. speed, direction, sex, age, weight and size). These models are not designed to produce globally optimal solutions that reduce the total evacuation time of the entire pedestrians in a building when all of them evacuate at the same time. In this study, we suggest a globally optimal model for indoor pedestrian evacuation to minimize the total evacuation time of occupants in a building considering different distributions of them. We used the genetic algorithm, one of meta-heuristic techniques because minimizing the total evacuation time can not be easily solved by polynomial expressions. We found near-optimal evacuation path and time by expressing varying pedestrians distributions using chromosomes and repeatedly filtering solutions. In order to express and experiment our suggested algorithm, we used CA(cellular automata)-based simulator and applied to different indoor distributions and presented the results.

Cohort-based evacuation time estimation using TSIS-CORSIM

  • Park, Sunghyun;Sohn, Seokwoo;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1979-1990
    • /
    • 2021
  • Evacuation Time Estimate (ETE) can provide decision-makers with a likelihood to implement evacuation of a population with radiation exposure risk by a nuclear power plant. Thus, the ETE is essential for developing an emergency response preparedness. However, studies on ETE have not been conducted adequately in Korea to date. In this study, different cohorts were selected based on assumptions. Existing local data were collected to construct a multi-model network by TSIS-CORSIM code. Furthermore, several links were aggregated to make simple calculations, and post-processing was conducted for dealing with the stochastic property of TSIS-CORSIM. The average speed of each cohort was calculated by the link aggregation and post-processing, and the evacuation time was estimated. As a result, the average cohort-based evacuation time was estimated as 2.4-6.8 h, and the average clearance time from ten simulations in 26 km was calculated as 27.3 h. Through this study, uncertainty factors to ETE results, such as classifying cohorts, degree of model complexity, traffic volume outside of the network, were identified. Various studies related to these factors will be needed to improve ETE's methodology and obtain the reliability of ETE results.