• 제목/요약/키워드: eutectic Si

검색결과 182건 처리시간 0.019초

Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향 (Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys)

  • 이충도
    • 한국주조공학회지
    • /
    • 제41권5호
    • /
    • pp.434-444
    • /
    • 2021
  • 본 연구에서는 미소기공과 Si석출상의 파단으로 구성되는 유효기공 면적분율에 대한 인장특성의 결함민감도 관점에서 Al-Si합금의 인장특성을 공정 Si입자의 분포양상 변화에 대하여 평가하고자 하였다. Al-xSi(x=2,5,8,11)합금의 주방상태 미세조직인 망상구조의 공정 Si입자는 T4처리를 통하여 과립형태로 변형시켰으며, CT분석과 주사전자현미경 관찰을 통하여 미소기공의 분포와 크기를 평가하였다. CT분석과 주사전자현미경의 비교분석을 통하여 인장변형과정에서의 균열성장이 최대 기공율을 포함하는 국부영역에서 발생함을 확인할 수 있었다. 그럼에도 불구하고 이들 분석방법에는 미소기공 인접영역에서의 소성변형집중과 미소기공의 분포양상에 의해 파생되는 실제적인 차이를 포함하기 때문에 정확히 일치된 결과를 얻을 수 없었다. 유효기공 면적분율의 변화에 대한 인장강도와 연신율의 변화는 과립형태보다 망상구조 정출상의 분율변화에 더욱 민감한 의존도를 가진다.

AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향 (Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

수평연속주조에 의한 과공정 Al-Si합금 제조에 관한 연구 (A Study on Manufacturing Process of Hypereutectic Al-Si Alloy via Horizontal Continuous Casting)

  • 류봉선;지무성;박원욱
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.116-123
    • /
    • 1996
  • The equipment for the horizontal continuous casting was built to produce hyper-eutectic Al-Si bars with a small cross-section of 25mm in diameter. The manufacturing processes including withdrawal cycle and secondary cooling methods were modified to refine the primary and the eutectic Si. The longitudinal casting speeds varied over the ranges of 670-1100mm/min for pure Al, and 200-350mm/min for Al-17wt%Si alloy. Due to the difference of cooling rate in the mould, microstructural asymmetry between the lower and the upper part of bar was observed. Thus, manufacturing processes such as cooling and withdrawal method were optimally combinated to get the homogeneous cast structure. With the increase of casting speed, the primary Si size was refined down to $30{\mu}m$ near the surface, and $80{\mu}m$ in the center of the bar.

  • PDF

주/단조 Al-Si-Mg 합금의 인장 거동 (Tensile Behavior of Cast-Forged Al-Si-Mg Alloy)

  • 김국주;권용남;이영선;정순철;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.329-332
    • /
    • 2004
  • Cast-forging process has a lot of advantages in terms of saving materials along with enhancement of mechanical properties. Therefore, this process has been taken as one of candidate process to manufacturing automotive suspension parts. Since most of cast-forging parts are made with using Al-Si alloys of high castability, the mechanical properties largely depends on the primary ${\alpha}$ and eutectic Si particles. During hot forging step these microstructural features evolve with strain increment. In the present study, the mechanical property evolution was investigated in terms of microstructual evolution with strain. Specially, fracture behavior of A356 alloy was studied to find out how to improve the mechanical properties.

  • PDF

Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화 (Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy)

  • 최진주;강유빈;임병용;이찬기;김한구;박광훈;김대근
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.31-37
    • /
    • 2020
  • In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.

화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조 (Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy)

  • 이준학;김정태;임수현;박혜진;신호정;박규현;;김기범
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰 (Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure))

  • 박종성;김명호;배차헌
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF

과공정 Al-Si 합금의 내마모성 연구 (A Study on the Wear Resistant Property in Hyper-eutectic Al-Si Alloy)

  • 김헌주;정운재
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.563-573
    • /
    • 1993
  • The wear resistance of Hyper-eutectic Al-Si alloy, have recently been noticed as a new automobile material, was investigated. For the purpose of developing wear resistant Al-Si alloy, some factors which attribute to wear resistance are examined as follows; refinement of primary Si particle during solidification, and effect of refinement on wear resistance and other mechanical properties. The most effective refinement was accomplished by adding both NaF and S, and this improve wear-resistance in abrasive wear type. The wear losses of specimens cast in metal mold were ruduced to 80% of those in sand mold. T6 heat treatment increases hardness, which resulted in reduction of wear loss about $3{\sim}18%$.

  • PDF

과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구 (A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys)

  • 김헌주;김창규
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

수렴성 빔 전자회절법을 이용한 $SiC_p/Al$ 복합재에서의 계면 생성물의 상분석 (Phase Identification of the Interfacial Reaction Product of $SiC_p/Al$ Composite Using Convergent Beam Electron Diffraction Technique)

  • 이정일;이재철;석현광;이호인
    • Applied Microscopy
    • /
    • 제26권1호
    • /
    • pp.95-104
    • /
    • 1996
  • A comprehensive methodology to characterize the interfacial reaction products of $SiC_p/2024$ Al composites is introduced on the basis of the experimental results obtained using XRD, SEM and TEM. XRD performed on the electrochemically extracted $SiC_p$ and bulk $SiC_p/2024$ Al composite have shown that the interfacial reaction products consist of $Al_{4}C_3$ having hexagonal crystallographic structure, pure eutectic Si having diamond cubic crystallographic structure, and $CuAl_2$, having tetragonal crystalloraphic structure, respectively. According to the images observed by SEM, $Al_{4}C_3$, which has been reported to have needle shape, has a hexagonal platelet-shape and eutectic Si is found to have a dendritic shape. In addition eutectic $CuAl_2$, was observed to form near interface and/or along the grain boundaries. In order to confirm the results obtained by XRD, the primitive cell volume and reciprocal lattice height of such interfacial reaction products were calculated using the data obtained from convergent beam electron diffraction (CBED) patterns, and then compared with theoretical values.

  • PDF