Browse > Article
http://dx.doi.org/10.7777/jkfs.2021.41.5.434

Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys  

Lee, ChoongDo (Dept. of Metallurgical & Materials Engineering, Inha Technical College)
Publication Information
Journal of Korea Foundry Society / v.41, no.5, 2021 , pp. 434-444 More about this Journal
Abstract
This study investigated the overall dependence of the tensile properties of Al-Si alloys on the distribution aspect of a eutectic Si particle in terms of defect susceptibility to the effective void area fraction, referring to the sum of pre-existing microvoids and the damage evolution of the Si particle. The network morphology of as-cast Al-xSi (x=2,5,8,11) alloys was modified to a granular type via a T4 treatment, after which a computational topography (CT) analysis and scanning electron microscope (SEM) observations were utilized to evaluate the size and distribution of the microvoids. The CT and SEM analyses indicated that the main cracks grow along local regions that possess the highest porosity level. The local plastic deformation around the microvoids and the distribution aspect of the microvoids induced a practical difference between the iso-volumetric CT measurement and the SEM fractography outcomes. The results demonstrated that the overall dependence of the ultimate tensile strength (UTS) and elongation on the effective void area fraction is more sensitive to the variation of the area fraction of the Si particle in the network morphology than in the granular type; this is due to the sequential damage evolution of the neighboring Si particles in the eutectic Si colony.
Keywords
Tensile property; Aluminum alloy; Microporosity; Defect susceptibility and Eutectic Si particle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Herrera and V. Kondic, Proc. Int. Conf. on Solidification and Cast Metals, The Metal Society, Sheffield, (1977) 460-473.
2 M. K. Surappa, E. Blank and J. C. Jaquet, Scr Metall., 20(9) (1986)1281.   DOI
3 C. H. Caceres, Scr Metall., 32(11) (1995) 1851.   DOI
4 C. H. Caceres and B. I. Selling, Mater Sci Eng A, 220(1-2) (1996) 109.   DOI
5 A. M. Gokhale and G. R. Patel, Mater Charac., 54(1) (2005) 13.   DOI
6 A. M. Gokhale and G. R. Patel, Mater Sci Eng A, 392(1-2) (2005) 184.   DOI
7 M. D. Dighe and A. M. Gokhale., Scr Mater., 37(9) (1997) 1435.   DOI
8 C. D. Lee, Mater Sci Eng A, 464(1-2) (2007) 249.   DOI
9 C. D. Lee, Mater Sci Eng A, 488 (1-2) (2008) 296.   DOI
10 M. F. Horstemeyer and A. M. Gokhale, Inter J of solids and struct., 36 (1999) 5029.   DOI
11 M. F. Horstemeyer, J. Lathrop, A. M. Gokhale and M. D. Dighe, Theoretical applied fracture mechanics, 33(1) (2000) 31.   DOI
12 J. Gammage, D.Wilkinson, Y. Brechet and D. Embury, Acta Mater., 52(18) (2004) 5255.   DOI
13 G. Huber, Y. Brechet, T. Pardoen, Acta Mater., 53(9) (2005) 2739.   DOI
14 W. J. Poole and N. Charra, Mater Sci Eng A, 406(1-2) (2005) 300.   DOI
15 C. D. Lee, K. S. Shin and Y. J. Kim, Eng Mater Frac., 175 (2017) 339.
16 C. D. Lee, J. I. Youn, Y. G. Lee and Y. J. Kim, Inter. J. Met. Cast., 11(1) (2017) 84.
17 C. D. Lee, J. I. Youn, Y. G. Lee and Y. J. Kim, Mater. Sci. Eng. A, 678 (2016) 227.   DOI
18 C. D. Lee, Mater Sci Eng A, 527(13-14) (2010) 3144.   DOI
19 J. P. Bandstra, D. M. Goto and D. A. Koss, Mater Sci Eng A, 249(1-2) (1998) 46.   DOI
20 W. J. Poole and N. Charra, Mater. Sci. Eng. A, 406(1-2) (2005) 300.   DOI