• 제목/요약/키워드: eutectic

Search Result 738, Processing Time 0.029 seconds

Study on Joint of Micro Solder Bump for Application of Flexible Electronics (플렉시블 전자기기 응용을 위한 미세 솔더 범프 접합부에 관한 연구)

  • Ko, Yong-Ho;Kim, Min-Su;Kim, Taek-Soo;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.4-10
    • /
    • 2013
  • In electronic industry, the trend of future electronics will be flexible, bendable, wearable electronics. Until now, there is few study on bonding technology and reliability of bonding joint between chip with micro solder bump and flexible substrate. In this study, we investigated joint properties of Si chip with eutectic Sn-58Bi solder bump on Cu pillar bump bonded on flexible substrate finished with ENIG by flip chip process. After flip chip bonding, we observed microstructure of bump joint by SEM and then evaluated properties of bump joint by die shear test, thermal shock test, and bending test. After thermal shock test, we observed that crack initiated between $Cu_6Sn_5IMC$ and Sn-Bi solder and then propagated within Sn-Bi solder and/or interface between IMC and solder. On the other hands, We observed that fracture propated at interface between Ni3Sn4 IMC and solder and/or in solder matrix after bending test.

Crystal Phase Changes of Zeolite in Immobilization of Waste LiCI Salt

  • KIM Jeong-Guk;LEE Jae-Hee;Lee Sung-Ho;KIM In-Tae;KIM Joon-Hyung;KIM Eung-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.176-181
    • /
    • 2005
  • The electrolytic reduction process and the electrorefining process, which are being developed at the Korea Atomic Energy Research Institute (KAERI), are to generate molten waste salts such as LiCI salt and LiCI-KCI eutectic salt, respectively. Our goal in waste salt management is to minimize a total waste generation and fabricate a very low­leaching waste form such as a ceramic waste form. Zeolite has been known to one of the most desirable media to immobilize waste salt, which is water soluble and easily radiolyzed. Zeolite can be also used to the removal of fission products from the spent waste salt. Molten LiCI salt is mixed with zeolite A at $650^{\circ}C$ to form a salt-loaded zeolite, and then thermally treated in above $900^{\circ}C$ to become an immobilized product with crystal phase of $Li_{8}Cl_{2}$-Sodalite. In this work, a crystal phase changes of immobilization medium, zeolite, during immobilization of molten LiCI salt using zeolite A is introduced.

  • PDF

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Preliminary Investigation on Joining Performance of Intermediate Heat Exchanger Candidate Materials of Very High Temperature Reactor(VHTR) by Vacuum Brazing (진공 브레이징을 이용한 고온가스냉각로 중간 열교환기 후보재료의 접합성능에 관한 예비시험)

  • Kim, Gyeong-Ho;Kim, Gwang-Ho;Lee, Min-Gu;Kim, Heung-Hoe;Kim, Seong-Uk;Kim, Suk-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.195-197
    • /
    • 2005
  • An intermediate heat exchanger(IHX) is a key component in a next-generation VHTR with process heat applications such as hydrogen production and also for an indirect gas turbine system. Therefore, high temperature brazing with nickel-based filler metal(MBF-15) was carried out to study the joining characteristic(microstucture, joining strength) of nickel-based superalloy(Haynes 230) by vacuum brazing. The experimental brazing was carried out at the brazing process, an applied pressure of about 0.74Mpa and the three kinds of brazing temperatures were 1100, 1150, and $1190^{\circ}C$ with holding time 5 minute. It's joining phenomena were analyzed by optical microscopy and scanning electron microscopy with EPMA. The results of microstructure in the centre-line region of a joint brazed with MBF-15 show a typical ternary eutectic of v-nickel, nickel boride and chromium boride.

  • PDF

IMPURITY SEGREGATION ON CRACKED GRAIN BOUNDARIES IN LLCC SOLDER JOINTS DURING THERMAL CYCLING (온도 변화에 지배되는 LLCC Solder접합부에서 균열이 일어난 계면에 대한 불순물 편석)

  • Lee, Seong-Min
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.329-333
    • /
    • 1994
  • A large number of grain boundaries were seen to crack in near-eutectic solder joints of leadless ceramic chip carriers (LLCC's) during thermal cycling at temperature ranges from -$35^{\circ}C$ to +$125^{\circ}C$ with lhr time period. One potential explanation for this type of cracking might be the presence of embrittling species on the boundary. Although there do not appear to be any instances reported in the literature of solders being embrittled by small amounts of contaminating species, the possibility of such an occurrence exists. The potential presence of impurities located at crack surfaces was inspected using Scanning Auger Microprobe(SAM) and it was found that intergranular cracking could be accomplished by the oxidation of the grain boundary. A physical model for fatigue crack growth was introduced, in which grain boundary separation took place under oxidation facilitated by sliding.

  • PDF

Study on the Characteristics of Electroplated Solder: Comparison of Sn-Cu and Sn-Pb Bumps (무연 도금 솔더의 특성 연구: Sn-Cu 및 Sn-Pb 범프의 비교)

  • 정석원;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.386-392
    • /
    • 2003
  • The electroplating process for a solder bump which can be applied for a flip chip was studied. Si-wafer was used for an experimental substrate, and the substrate were coated with UBM (Under Bump Metallization) of Al(400 nm)/Cu(300 nm)Ni(400 nm)/Au(20 nm) subsequently. The compositions of the bump were Sn-Cu and eutectic Sn-Pb, and characteristics of two bumps were compared. Experimental results showed that the electroplated thickness of the solders were increased with time, and the increasing rates were TEX>$0.45 <\mu\textrm{m}$/min for the Sn-Cu and $ 0.35\mu\textrm{m}$/min for the Sn-Pb. In the case of Sn-Cu, electroplating rate increased from 0.25 to $2.7\mu\textrm{m}$/min with increasing current density from 1 to 8.5 $A/dm^2$. In the case of Sn-Pb the rate increased until the current density became $4 A/dm^2$, and after that current density the rate maintains constant value of $0.62\mu\textrm{m}$/min. The electro plated bumps were air reflowed to form spherical bumps, and their bonded shear strengths were evaluated. The shear strength reached at the reflow time of 10 sec, and the strength was of 113 gf for Sn-Cu and 120 gf for Sn-Pb.

Microstructural changes during semi-solid state processing of hypereutectic Al-Si alloys (고액공존 과공정 Al-Si합금의 교반응고시 미세조직변화)

  • Ryoo, Young-Ho;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.483-493
    • /
    • 1995
  • The microstructural changes during semi-solid state processing of hypereutectic Al-Si alloy has been investigated in the present study. Stirring of semi-solid slurry results in the morphological changes of the primary Si particles, i.e. from angular rod shape to near-spherical shape. Besides the spherodization of primary Si particles, the average particle size increases, especially, at much higher rate in the final stage than that in the early stage of stirring. Various microstructure characterization techniques, such as anisotropic etching, SEM imaging and ECP analysis, reveal that the spherodization of primary Si particles occurs by the combinations of the mechanisms of coalescence, fracture, and wear of the individual particles. Isothermal shearing of hypereutectic Al-Si at $580^{\circ}C$ shows that spherical ${\alpha}-Al$ particles are formed by the dissociation of Al-Si eutectic structure at the early stage of isothermal shearing. The spherical ${\alpha}-Al$ particles gradually grow by the mechanisms of Ostwald ripening and coalescence of the particles.

  • PDF

A Study on the Complementary Alloying Design of Wear Resistant CV Graphite Cast Irons (내마모 CV흑연주철의 합금설계)

  • Park, Heung-Il;Kim, Woo-Yeol;Bae, Cha-Hurn;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 1993
  • The effects of alloying elements on the structure and mechanical properties of compacted/vermicular graphite cast irons containing copper, tin and molubdenum for producing pearlite matrix, and also containing phosphorus and boron for increasing wear resistance, were investigated. The Brinell hardness and ultimate tensile strength of the specimens with the range of compositions, [1.5% Cu-0.05% Sn-(0.2-0.4)% Mo-(0.2-0.6)% P-(0.035-0.070)% B], was found to fall within in the following range, depending on their composition; Brinell hardness of BHN 250-315, ultimate tensile strength of $28.1-40.3kg/mm^2$. It was also found within this experiment that CV graphite cast irons possessing higher amount of phosphide eutectic exhibit better wear resistance, but the wear resistance became deteriorate when the area fraction of phosphide eutectics exceed more than 10%. From these experimental results, it could be concluded that the CV graphite cast iron containing 1.5% Cu, 0.05% Sn, 0.4% Mo, 0.2% P and 0.035% B showed good mechanical and wear resistance properties.

  • PDF

A Study on Wetting, Interfacial Reaction and Mechanical Properties between Sn-Bi-Ag System Solders and Cu Substrate (Sn-Bi-Ag계 땜납과 Cu기판과의 젖음성, 계면 반응 및 기계적 성질에 관한 연구)

  • Seo, Youn-Jong;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.245-251
    • /
    • 1997
  • Solderability, interfacial reaction and mechanical properties of joint between Sn-Bi-Ag base solder and Cu-substrate were studied. Solders were subjected to aging treatments to see the change of mechanical properties for up to 30 days at $100^{\circ}C$, and then also examined the changes of microstructure and morphology of interfacial compound. Sn-Bi-Ag base solder showed about double tensile strength comparing to Pb-Sn eutectic solder. Addition of 0.7wt%Al in the Sn-Bi-Ag alloy increase spread area on Cu substrate under R-flux and helps to reduce the growth of intermetallic compound during heat-treatment. According to the aging experiments of Cu/solder joint, interfacial intermetallic compound layer was exhibited a parabolic growth to aging time. The result of EDS, it is supposed that the soldered interfacial zone was composed of $Cu_6Sn_5$.

  • PDF

Fabrication of Composite Filler Metal by Melt Infiltration (용탕 침투법을 이용한 복합 삽입 금속의 제조)

  • Park, Heung-Il;Kim, Ji-Tae;Kim, Woo-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.