• Title/Summary/Keyword: euler

Search Result 1,640, Processing Time 0.023 seconds

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

Derivation of Extended Mild-Slope Equation Using Euler-Lagrange Equation (Euler-Lagrange 식을 사용한 확장형 완경사방정식 유도)

  • Lee, Changhoon;Kim, Kyu-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.493-496
    • /
    • 2009
  • In this study, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. First, we follow Kim and Bai (2004) who derive the complementary mild-slope equation in terms of the stream function using the Euler-Lagrange equation and we compare their equation to the existing extended mild-slope equations of the velocity potential. Second, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. In the developed equation, the higher-order bottom variation terms are newly developed and found to be the same as those of Massel (1993) and Chamberlain and Porter (1995). The present study makes wide the area of coastal engineering by developing the extended mild-slope equation with a way which has never been used before.

q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

  • Seo, Jong Jin;Araci, Serkan;Acikgoz, Mehmet
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

GENERALIZED EULER PROCESS FOR SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Yu, Dong-Won
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.941-958
    • /
    • 2000
  • Euler method is generalized to solve the system of nonlinear differential equations. The generalization is carried out by taking a special constant matrix S so that exp(tS) can be exactly computed. Such a matrix S is extracted from the Jacobian matrix of the given problem. Stability of the generalized Euler process is discussed. It is shown that the generalized Euler process is comparable to the fourth order Runge-Kutta method. We also exemplify that the important qualitative and geometric features of the underlying dynamical system can be recovered by the generalized Euler process.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..

RELIABILITY OF NUMERICAL SOLUTIONS OF THE G-EULER PROCESS

  • YU, DONG WON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.49-66
    • /
    • 2022
  • The G-Euler process has been proposed to overcome the difficulties of the calculation of the exponential function of the Jacobian. It is an explicit method that uses the exponential function of the scalar skew-symmetric matrix. We define the moving shapes of true solutions and the moving shapes of numerical solutions. It is discussed whether the moving shape of the numerical solution matches the moving shape of the true solution. The match rates of these two kinds of moving shapes are sequentially calculated by the G-Euler process without using the true solution. It is shown that the closer the minimum match rate is to 100%, the more closely the numerical solutions follow the true solutions to the end. The minimum match rate indicates the reliability of the numerical solution calculated by the G-Euler process. The graphs of the Lorenz system in Perko [1] are different from those drawn by the G-Euler process. By the way, there is no basis for claiming that the Perko's graphs are reliable.

CONVERGENCE OF THE GENERALIZED IMPLICIT EULER METHOD

  • Yu, Dong-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • We introduce the generalized Runge-Kutta methods with the exponentially dominant order .omega. in [3], and the convergence theorems of the generalized explicit Euler method are derived in [4]. In this paper we will study the convergence of the generalized implicit Euler method.

  • PDF

On Matroids and Graphs

  • Kim, Yuon Sik
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.29-31
    • /
    • 1978
  • bipartite graph와 Euler graph의 정의를 사용하는 대신 이들 graph가 나타내는 특성을 사용하여 bipartite matroid와 Euler matroid를 정의하고 이들 matroid가 binary일 때 서로 dual 의 관계가 있음을 증명한다. 이 관계를 이용하여 bipartite graph와 Euler graph의 성질을 밝힐수 있다.

  • PDF