• Title/Summary/Keyword: ethylene release

Search Result 96, Processing Time 0.033 seconds

Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.585-590
    • /
    • 2009
  • The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

Study on Flame Stability Using a Slot Burner (슬롯버너를 이용한 예혼합화염의 안정성에 관한 연구)

  • Lee, Won-Nam;Seo, Dong-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.97-103
    • /
    • 2001
  • The characteristics of flame stability have been studied experimentally using a slot burner. The blowout conditions of a fuel-lean premixed laminar flame, which is located in the middle of fuel-rich premixed laminar flames, are identified for propane, ethylene, and methane flames. The fuel-rich flames could stabilize the fuel-lean flame for the equivalence ratio as low as 0.2. The laminar flame speed along with the heat release rate is likely to be the important factor in stabilizing a fuel-lean flame. The increase of heat release rate on a fuel-rich flame lowers the equivalence ratio limit for the stable fuel-lean flames. The stability of fuel-lean flames, however, was not sensitive to the equivalence ratio of a fuel-rich flame.

  • PDF

Revelation of the Susceptivility of Microcapsule by the Control of Polymer Structure (I) -preparation of polyurethane microcapsules- (고분자구조제어에 의한 microcapsule의 감성기능발현(I) -polyurethane microcapsule의 제조와 그 특성-)

  • Hong, Ki Jeong;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.52-62
    • /
    • 1997
  • Abstract Polyurethanes have been designed and fabricated into membranes with unique separation properties. Moreover, polyurethane microcapsules also have been reported actively as controlled release materials for their excellent blood compatibility, tensile strength and permeability. In this study, polyurethane microcapsules were synthesized by interfacial polymerization in an aqueous poly(ethylene glycol) dispersion of toluene diisocyanate in perfume oil using poly(vinyl alcohol) as the stabilizing agent. The effect of a few important process conditions on the average particle size and distributions, morphologies, and thermal properties to design microcapsules for the sustained release system was investigated.

  • PDF

Cellular Interaction of In Situ Chitosan- and Hyaluronic Acid-Based Hydrogel

  • Noh, In-Sup
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.183-183
    • /
    • 2006
  • Hyaluronic acid and chitosan-based poly(ethylene oxide) (HA-PEO and Chitosan-PEO) hydrogels have been employed as unique biomedical polymeric materials with properties such as bioactivity from polysaccharide, biocompatibility of HA and chitosan as well as PEO and control release of bioactive molecules from the hydrogel itself. We here examine in situ hydrogels based on hyaluronic acid and chitosan in terms of their synthesis, mechanical properties, morphologies and in vitro cellular interactions on their surface and inside. In vivo bone regeneration of HA-PEO and Chitosan-PEO hydrogels was compared with in mouse model.

  • PDF

Non-aqueous Zinc(Zn) Plating to Prevent Hydrogen Release from Test Specimens in Hydrogen Embrittlement Test (수소 취성 시험 평가를 위한 수소 방출 방지용 비수계 아연(Zn) 도금)

  • Jeon, Jun-Hyuck;Jang, JongKwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.21-26
    • /
    • 2022
  • Zinc is emerging as a environment-friendly plating material to replace cadmium, which is harmful to the human body, to prevent hydrogen gas penetration or release from metal materials. Electroplating of Zn and Zn alloys, which is usually performed in an aqueous acidic atmosphere, has disadvantages such as low coulombic efficiency, corrosion, and hydrogen release, resulting in industrial use difficult. In this study, a deep-eutectic solvent was synthesized using choline chloride and ethylene glycol. Using this as a solvent, an electrolyte for Zn plating was prepared, and then zinc was plated on the STS 304 substrate. The surface microstructure and roughness were observed using SEM and AFM. The crystal structure of the electro-plated film was analyzed using XRD. Finally, the preventing effects of hydrogen release through Zn-based deep-eutectic plating on the STS 304 substrate were compared with the uncoated substrate.

Possibility of Wound Dressing Using Poly(L-leucine)/poly(ethylene glycol)/poly(L-leucine) Triblock Copolymer

  • Kim, Hyeon-Jeong;Jo, Jong-Su
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.249-254
    • /
    • 1997
  • ABA-type block copolymers composed of poly(L-leucine)(PLL) as the A component and poly(ethylene glycol)(PEG) as the B component were synthesized by ring-opening polymerization of L-leucine N-carboxyanhydride initiated by primary amino group located at both ends of PEG chain. A silver sulfadiazine(AgSD)-impregnated wound dressing of sponge-type was prepared by the lyophilization method. Morphological structure of this wound dressing obtained by scanning electron microscopy(SEM) was composed of a dense skin layer and a macroporous inner sponge layer. Equilibrium water content(EWC) of wound dressing was above 10%. It increased with an increased of PEO content in the block copolymer due to the hydrophilicity of PEO. AgSD release from AgSD- impregnated wound dressing in PBS buffer(pH=7.4) was dependent on PEG composition in the block copolymer. Therefore, EWC and release of AgSD can be control by PEG composition. Antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudmonas aeruginosa and Stapplococus aruous. Cytotoxicity of the wound dressing was evaluated by studing mouse skin fibroblast(L929). From the behavior of antimicrobial releasing and the investigation of the suppression of bacterial proliferation, it was supposed that the wound dressing containing antibiotics could protect the wound surfaces from bacterial invasion to suppress the bacterial proliferation effectively. In cytotoxicity observation, cellular damage was reduced by the control led released of AgSD from the LEL sponge matrix of AgSD-medicated wound dressing. In vivo test, granulous tissue formation and wound contraction or the AgSD and DHEA impregnated wound dressing were aster than any other groups.

  • PDF

Drug Delivery System Using Electrospun Nanofiber Mats (전기방사된 나노파이버 매트를 이용한 약물전달시스템에 관한 연구)

  • Yoon, Hyeon;Park, Yoon-Kyung;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • The nanofibers fabricated by using an electrohydrodynamic process has been used as various applications, such as nano-device, filtering system, protective clothes, wound dressing, and drug delivery system (DDS). Of these applications, the DDS should be needed to minimize side effects of drugs, maximize the properties of medicine, and efficiently deliver the required amount of drugs to the diseased area. In this paper, by using the electro spinning process, which is one of electrohydrodynamic processes, two different types, polycarprolactone and poly(ethylene oxide)/Rhodamine B, of electrospun mats were fabricated layer by layer and the release behavior of Rhodamine B was characterized with time. In addition, to show the feasibility of DDS of this type, we tested release behavior of a peptide of the nanofiber system, a PCL/(Peptide+PEO)/PCL nanofiber mat. The released peptide did not loss biological activities. From these results, we believe that the layered nanofiber mat as a DDS has enough function of a new drug delivery system.

Preparation and Characterization of Polyurethane Microcapsules Containing Functional Oil (기능성 오일을 함유하는 폴리우레탄 마이크로캡슐의 제조 및 분석)

  • 김인회;서재범;김영준
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.400-409
    • /
    • 2002
  • Polyurethane microcapsules containing functional oil (citronella oil) were successfully prepared by conventional interfacial polymerization of tolulene 2,4-diisocyanate (TDI) and ethylene glycol (EG) and characterized by Fourier transform (FT-IR) spectroscopy, Ultraviolet spectroscopy, particle size analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Tile effects of polymerization variables, such as surfactant concentration and agitation speed, on the particle size and particle size distribution were investigated. FT-IR spectroscopic data showed that citronella oil was successfully encapsulated in the microcapsule. Thermogravimetric analysis data showed that the microcapsule was thermally stable up to $220^{\circ}C$. The controlled release of the citronella oil present in the microcapsule core in a methanol medium was demonstrated by ultraviolet spectroscopy showing that the amount of released citronella oil was increased with increasing time. It was observed that the amount of released citronella oil was increased with increasing stirring speed and emulsifier concentration in the rnicrocapsule preparation step. Polyurethane microcapsules containing citronella oil showed excellent anti-moth property.

Clonazepam Release from Core-shell Type Nanoparticles In Vitro

  • Kim, Hyun-Jung;Jeong, Young-Il;Kim, Sung-Ho;Lee, Young-Moo;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.324-329
    • /
    • 1997
  • AB-type amphiphilic copolymers (abbreviated as LE) composed of poly (L-leucine) (PLL) as the A component and poly (ethylene oxide) (PEO) as the B component were synthesized by the ring-opening polymerization of L-leucine N-carboxy-anhydride initiated by methoxy polyoxyethylene amine $(Me-PEO-NH_2)$ and characterized. Core-shell type nanoparticles were prepared by the diafiltration method. Particle size distribution obtained by dynamic light scattering was dependent on PLL composition and the size for LE-1, LE-2 and LE-3 was $369.6{\pm}267$, $523.4{\pm}410$ and $561.2{\pm}364 nm$, respectively. Shapes of the nanoparticies observed by transmission electron microscope (TEM) were almostly spherical. The critical micelle concentration (CMC) of the nanoparticles determined by a fluorescence probe technique was dependent on the composition of hydrophobic PLL, and the CMC for LE-1, LE-2 and LE-3 was $2.0{\times}10^{-6},1.7{\times}10^{-6}$ and $1.5{\times}10^{-6}(mol/l) $, respectively. Clonazepam release from core-shell type nanoparticles in vitro was dependent on PLL composition and drug loading content.

  • PDF

[ $W_{1}/O/W_{2}$ ] Multi-emulsion Capsules Containing Ascrobic Acid-2-Glucoside Prepared Using PCL-based Amphiphilic Di- and Tri-block Copolymers

  • Cho, Heui-Kyoung;Chang, Woo-Hyuck;Cheong, In-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.262-262
    • /
    • 2006
  • Biodegradable and amphiphilic di-block and tri-block copolymers, prepared with monomethoxy poly ethylene glycol (MPEG) and ${\varepsilon}-caprolactone\;({\varepsilon}-CL)$, were used for the application of W1/O/W2 multi- emulsion capsules. The effects of topology and the ratio of hydrophilic moiety of PCL-based polymers on the encapsulation efficiency of the $W_{1}/O/W_{2}$ multi-emulsion capsules containing Ascorbic Acid-2-Glucoside (AA-2-G) were investigated. The ratio of PEG and PCL was 1:0.5, 1:0.75, 1:1, and 1:1.25. PEG-PCL block copolymers were added to the first step of the preparation of $W_{1}/O$ emulsions. The dispersion stability, the particle size, the morphology of the $W_{1}/O/W_{2}$ multi-emulsion capsules were observed using an on-line turbidity meter, dynamic light scattering (DLS), a confocal microscopy (with FITC) and an optical microscopy. Biodegradable behavior of the PEG-PCL block copolymers and release behavior of AA-2-G were also observed by Gel Permeation Chromatography (GPC) and High Performance Liquid Chromatography (HPLC).

  • PDF