DOI QR코드

DOI QR Code

Non-aqueous Zinc(Zn) Plating to Prevent Hydrogen Release from Test Specimens in Hydrogen Embrittlement Test

수소 취성 시험 평가를 위한 수소 방출 방지용 비수계 아연(Zn) 도금

  • 전준혁 (한국건설생활환경시험연구원 금속기계센터) ;
  • 장종관 (주식회사 에드캠투)
  • Received : 2022.04.26
  • Accepted : 2022.05.17
  • Published : 2022.06.30

Abstract

Zinc is emerging as a environment-friendly plating material to replace cadmium, which is harmful to the human body, to prevent hydrogen gas penetration or release from metal materials. Electroplating of Zn and Zn alloys, which is usually performed in an aqueous acidic atmosphere, has disadvantages such as low coulombic efficiency, corrosion, and hydrogen release, resulting in industrial use difficult. In this study, a deep-eutectic solvent was synthesized using choline chloride and ethylene glycol. Using this as a solvent, an electrolyte for Zn plating was prepared, and then zinc was plated on the STS 304 substrate. The surface microstructure and roughness were observed using SEM and AFM. The crystal structure of the electro-plated film was analyzed using XRD. Finally, the preventing effects of hydrogen release through Zn-based deep-eutectic plating on the STS 304 substrate were compared with the uncoated substrate.

아연은 인체에 유해한 카드뮴을 대체하여 금속재료에 수소가스가 침투하거나 금속재료 내부로부터 수소가 누출되는 것을 방지하기 위한 친환경 코팅 재료로 주목받고 있다. 일반적으로 수성 및 산성 분위기에서 수행되는 아연(Zn) 및 아연 합금의 전기도금은 낮은 쿨롱 효율, 부식 및 수소 누출과 같은 단점이 있어 산업적 이용이 어렵다. 본 연구에서는 염화콜린과 에틸렌글리콜을 이용하여 Deep-eutectic solvent를 합성하고 이를 용매로 사용하여 아연 도금용 전해질을 제조하여 STS 304 기판 위에 전기 도금하였다. 주사전자현미경(SEM)과 원자힘현미경(AFM)을 이용하여 표면 미세구조와 조도를 관찰하였다. X선회절분석(XRD)을 이용하여 도금 막의 결정구조를 분석하였다. 마지막으로 수소를 주입한 STS 304 기판에 최적화된 Zn 도금액을 코팅한 시료의 수소 방출 방지 효과를 분석하였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임. (20215810100090, 수소 저장탱크/압력용기 수소 취성 안전성 검사기술 및 안전기준 개발) 및 2020년도 중소벤처기업부의 재원으로 중소기업기술정보진흥원의 지원을 받아 수행된 연구임. (S2961994, 디딤돌 창업과제)

References

  1. European Chemicals Agency (ECHA). Available online: https://echa.europa.eu/substances-restrictedunderreach/-/dislist/details/0b0236e1807e2518 (accessed on 1 July 2020).
  2. ISO 16573-1:2020, Steel - Measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels - Part 1: Constant load test
  3. Lotfi, N.; Aliofkhazraei, M.; Rahmani, H.; Darband, G.B., "Zinc-Nickel Alloy Electrodeposition: Characterization, Properties, Multilayers and Composites", Prot. Met. Phys. Chem. Surf., 54, 1102-1140, (2018) https://doi.org/10.1134/S2070205118060187
  4. Alesary, H.F.; Cihangir, S.; Ballantyne, A.D.; Harris, R.C.; Weston, D.P.; Abbott, A.P.; Ryder, K.S., "Influence of additives on the electrodeposition of zinc from a deep eutectic solvent", Electrochim. Acta., 304, 118-130. (2019) https://doi.org/10.1016/j.electacta.2019.02.090
  5. Rivas-Esquivel, F.M.; Brisard, G.M.; Ortega-Borges, R.; Trejo, G.; Meas, Y., "Zinc electrochemical deposition from ionic liquids and aqueous solutions onto indium tin oxide", Int. J. Electrochem. Sci., 12, 2026-2041, (2017) https://doi.org/10.20964/2017.03.58
  6. Kranthi Kumar Maniam 1 and Shiladitya Paul, Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids. Appl. Sci. (2020) 10, 5321. https://doi.org/10.3390/app10155321
  7. Hulsbosch J, Vos DED, Binnemans K, Ameloot R, "Biobased Ionic Liquids: Solvents for a Green Processing Industry?", ACS Sustainable Chemistry & Engineering., 4(6), 2917-2931, (2016) https://doi.org/10.1021/acssuschemeng.6b00553
  8. Xing DY, Yi Dong W, Chung TS.,"Effects of Different Ionic Liquids as Green Solvents on the Formation and Ultrafiltration Performance of CA Hollow Fiber Membranes", Industrial & Engineering Chemistry Research., 55(27), 7505-7513, (2016) https://doi.org/10.1021/acs.iecr.6b01603
  9. Grieve TL, Drummond CJ., "Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications", Chemical Reviews, 115(20), 11379-11448, (2015) https://doi.org/10.1021/acs.chemrev.5b00158
  10. Drioli E, Macedonio F., "Membrane Engineering for Water Engineering", Industrial & Engineering Chemistry Research., 51(30), 10051-10056, (2012) https://doi.org/10.1021/ie2028188
  11. Koch, V. R. and Nanjundiah, C., "The Interfacial Stability of Li with Two New Solvent-Free Ionic Liquids: 1,2-Dimethyl-3-propyl imidazolium Imide and Methide", J. Electrochem. Soc., 142(7), L116-118, (1995) https://doi.org/10.1149/1.2044332
  12. Ogihara, W., Sun, J., Forshth, M., MacFarlanc, D. R., Yoshizawa, M. and Ohno, H. "Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes", Electrochim. Acta., 49, 1797-1801, (2004) https://doi.org/10.1016/j.electacta.2003.12.011
  13. Jeng-Kuei Changa, Su-Yau Chena, Wen-Ta Tsaia, Ming-Jay Dengb and I-Wen Sunb, "Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior", Electrochem commun, 9(7), 1602-1606, (2007) https://doi.org/10.1016/j.elecom.2007.03.009
  14. Szu-Jung Pan, Wen-Ta Tsai, Jeng-Kuei Chang, I-Wen Sun, "Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3- 1-ethyl-3-methylimidazolium chloride ionic liquid", Electrochimica Acta., 55, 2158-2162, (2010) https://doi.org/10.1016/j.electacta.2009.11.050