• Title/Summary/Keyword: ethylene copolymerization

Search Result 60, Processing Time 0.036 seconds

Copolymerization of 4′-vinylbenzo-15-crown-5 with Di(ethylene glycol) Ethyl Ether Acrylate

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2002
  • Radical copolymerization behavior of 4'-vinylbenzo-15-crown-5, a vinyl monomer having a pendant 15-membared crown ether unit (VCE) with di(ethylene glycol) ethyl ether acrylate (DEGEEA) was carried out in toluene solution using 2,2-azobisisobutyronitrile (AIBN) as an initiator. The copolymers were characterized by means of FT-IR, $^1{H-NMR}$, and $^{13}{C-NMR}$ . The reactivity ratio of VCE and DEGEEA, determined by Fineman-Ross and Kelen-Tudos method, gave values 0.55 for VCE, and 0.11 for DEGEEA respectively.

Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers

  • Son, Jun-Sik;Ji, Dong-Sun
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.156-160
    • /
    • 2003
  • Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.

Reaction Properties of Dinuclear Metallocenes

  • Noh Seok-Kyun;Jeong Eung-Yeong;Qei Duang Huang Dan;Lyoo Won-Seok
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.224-225
    • /
    • 2006
  • The Ethylene polymerization behavior of a series of polymethylene bridged dinuclear CGC $[Zr({\eta}^{5}:{\eta}^{1}-C_{9}H_{5}SiMe_{2}NCMe_{3})Me_{2}]_{2}[(CH_{2})_{n}]\;[_{n}=6(1),\;9(2),\;12(3)]$ in the cocatalytic activation with $Ph_{3}C^{+}B^{-}(C_{6}F_{5})_{4}\;(B_{1})\;or\;Ph_{3}C^{+}(C_{6}F_{5})_{3}B^{-}C_{6}F_{4}B^{-}(C_{6}F_{5})_{3}Ph_{3}C^{+}\;(B_{2})\;or\;B(C_{6}F_{5})_{3}\;(B_{3})$ were investigated to study the nuclearity effects as well as the counteranion effects. The ethylene polymerization and ethylene/1-hexene copolymerization were conducted at $30^{\circ}C$ It was found that both in ethylene polymerization and ethylene/1-hexene copolymerization, activities increased in the order of 1 < 2 < 3, which indicates the presence of longer bridge between two active sites contributes more efficiently to facilitate the polymerization activity.

  • PDF

Synthesis of Low Molecular-weight Poly (Propylene Carbonate)-Poly (Ethylene Glycol) Block Copolymers through $CO_2$/Propylene Oxide Copolymerization (이산화탄소/프로필렌 옥사이드 공중합을 통한 저분자량 폴리(프로필렌 카보네이트)-폴리(에틸렌 글리콜) 블록 공중합체의 합성)

  • Lee, Sang-Hwan;Cyriac, Anish;Jeon, Jong-Yeob;Lee, Bun-Yeoul
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.244-249
    • /
    • 2011
  • We synthesized low molecular-weight polymers bearing hydrophobic and hydrophilic parts in a chain through $CO_2$/propylene oxide copolymerization. When hydrophilic poly (ethylene glycol) bearing -OH group (s) at the end group (s) was added as a chain transfer agent in the $CO_2$/propylene oxide copolymerization catalyzed by a highly active catalyst, block polymers were formed. If poly (ethylene glycol) (PEG) bearing -OH group only at an end was fed, PEG-block-PPC diblock copolymer was obtained. When PEG bearing -OH group at both ends was fed, PPC-block-PEG-block-PPC triblock copolymer was obtained. We confirmed formation of block copolymers by $^1H$-NMR spectroscopy and GPC studies.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

Interchange Reaction Kinetics and Sequence Distribution of Liquid Crystalline Poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate)

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) [copoly(ET/CPT)] was prepared using poly(ethylene terephthalate) (PET) as a flexible spacer, terephthalic acid (TPA), and chlorohydroquinone diacetate (CHQDA). All reactions involved in the copolymerization were investigated using some model compounds: TAP was used for acidolysis, diphenylethyl terephthalate (DPET) for interchange reaction between PET chains, and 야-o-chlorophenyl terephthalate (DOCT) and di-m-chlorophenyl terephthalate (DMCT) for interchange reaction between PET and rigid rodlike segments. Activation energies obtained for the acidolysis of PET with TPA and for interchange reaction of PET with DPET, DOCT, and DMCT were 19.8 kcal/mol, 26.5 kcal/mole, and 45.9 kcal/mole, respectively. This result supports that the copolymerization proceeds through the acidolysis of PET with TPA first and subsequent polycondensation between carboxyl end group and CHQDA or acetyl end group, which is formed from the reaction of CHQDA and TPA. Also, it was found that ester-interchange reaction can be influenced by the steric hindrance. Copoly(ET/CPT)s obtained has ethylene acetate end groups formed from acetic acid hydroxy ethylene end groups and showed almost the random sequence distribution for all compositions.

  • PDF

Preparation of High Transparent Olefin Copolymer with Metallocene Catalyst

  • Lee, Dong-Ho;Choi, Yeon-Seok;Ha, Ki-Ryong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1028-1029
    • /
    • 2003
  • The copolymerization of ethylene and norbornene was carried out with ansa-metallocene and modified methylaluminoxane (MMAO) cocatalyst. The copolymerization behavior was changed with the structure of metallocene catalysts. In addition the catalyst activity was dependent on the structure of MMAO, i.e.. MMAO-4 which contains less i-butyl group compared to MMAO-3A exhibited higher catalyst activity than MMAO-3A. The glass transition temperature and the composition of the produced copolymer were not affected by MMAO type.

  • PDF

Effect of Triethylaluminum/Transition-Metal Ratio on the Physical Properties and Chemical Composition Distributions of Ethylene-Hexene Copolymers Produced by a $rac-Et(Ind)_2ZrCl_2/TiCl_4/MAO/SMB$ Catalyst

  • Park, Hai-Woong;La, Kyung-Won;Song, In-Kyu;Chung, Jin-Suk
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.221-224
    • /
    • 2007
  • A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for a metal-locene/Ziegler-Natta hybrid catalyst. The prepared $rac-Et(Ind)_2ZrCl_2/TiCl_4$/MAO(methylaluminoxane)/SMB catalyst was applied to the copolymerization of ethylene with l-hexene using a variable triethylaluminum (TEA)/transition-metal (Ti) ratio and fixed MAO/transition-metal (Zr) ratio. The effect of the Al(TEA)/Ti ratio on the physical properties and chemical composition distributions (CCDs) of the ethylene-hexene copolymers produced by the hybrid catalyst was investigated. In the ethylene-hexene copolymers, two melting temperatures attributed to the metal-locene and Ziegler-Natta catalysts were clearly observed. The number of CCD peaks was increased from six to seven and the temperature region in which the peaks for the short chain branches of the ethylene-hexene copolymer were distributed became lower as the Al(TEA)/Ti ratio was increased from 300 to 400. Furthermore, the temperature regions corresponding to the lamellas in the copolymer became lower and those corresponding to the small lamellas in the copolymer became higher as the Al(TEA)/Ti ratio was increased from 300 to 400. In the copolymer produced with Al(TEA)/Ti = 500, however, only four CCD peaks were observed and the short chain branches were poorly distributed.

Copolymerization of Ethylene and α-olefins with Embedded rac-Et[Ind]2ZrCl2 Catalyst (Embedded rac-Et[Ind]2ZrCl2 메탈로센 촉매를 이용한 Ethylene/α-olefin 공중합특성)

  • Shin, Dong Min;Chung, Jin Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.137-141
    • /
    • 2008
  • Copolymerization of ethylene and ${\alpha}$-olefin using $rac-Et[Ind]_2ZrCl_2/MAO$ catalyst embedded onto polysty-rene was examined. The embedded catalyst was prepared by polymerizing a small amount of styrene with $rac-Et[Ind]_2ZrCl_2$. The catalytic activities of the embedded catalyst were higher than those of the homogeneous catalystregardless of comonomer type and the characteristic of the active sites of the embedded catalyst was not affected duringthe embedding process. Based on the DSC and NMR analyses of the produced copolymers, it was thought that theembedded catalyst had similar or slightly better comonomer incorporation ability. Furthermore, the copolymers produced by the embedded catalyst had higher bulk densities and better particle morphology than those by the homogeneous catalyst.

Synthesis of ArOTiCl3 complexes and their application for ethylene polymerization and copolymerization

  • Wang, Jianwei;Ren, Yingchun;Xu, Sheng;Mi, Puke
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.303-316
    • /
    • 2017
  • In this article, novel olefin polymerization catalyst with lower cost and simple synthetic process were developed, $ArOTiCl_3$ complexes [$(2-OMeC_6H_4O)TiCl_3(C1)$, $(2,4-Me_2C_6H_3O)TiCl_3(C2)$, $TiCl_3(1,4-OC_6H_4O)TiCl_3(C3)$, $TiCl_3(1,4-OC_6H_2O-Me_2-2,5)$ $TiCl_3(C4)$] and corresponding $(ArO)_2TiCl_2$ complexes [$TiCl_2(OC_6H_4-OMe-2)_2(C5)$ and $TiCl_2(OC_6H_3-Me_2-2,6)_2(C6)$] have been synthesized by the reaction of $TiCl_4$ with phenol, all these complexes were well characterized with $^1H$ NMR, $^{13}C$ NMR, MASS and EA. When combined with methylaluminoxane (MAO), the $ArOTiCl_3/MAO$ system shows high activity for ethylene copolymerization with 1-octene and copolymer was obtained with broaden molecular weight distribution (MWD). The $^{13}C$ NMR result of polymer indicates that the 1-octene incorporation in polymer reached up to 8.29 mol%. The effects of polymerization temperature, concentration of polymerization monomer and polymerization time on the catalytic activity have been investigated.