Browse > Article

Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers  

Son, Jun-Sik (Department of Textile Engineering, Dankook University)
Ji, Dong-Sun (Department of Textile Engineering, Dankook University)
Publication Information
Fibers and Polymers / v.4, no.4, 2003 , pp. 156-160 More about this Journal
Abstract
Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.
Keywords
Poly(ethylene 2,6-naphthalate); Poly(ethylene glycol); Melt copolymerization; Hydrophilicities; Contact angle;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 S. Buchnner, D. Wiswe, and H. G. Zachmann, Polymer, 30,480 (1989)   DOI   ScienceOn
2 S. S. Park and S. S. Im, Polymer (Korea), 18, 708 (1994)
3 H. Zhang, A. Rankin, and I. M. Ward, Polymer, 37, 1079-1085 (1996)   DOI   ScienceOn
4 C. G. Cho, S. W. Woo, K. L. Choi, and S. S. Hwang, Polymer (Korea), 21, 821 (1997)
5 S. W. Woo and C. G. Cho, J. Korean Fiber Soc., 36,211 (1999)
6 N. Bhattarai, H. Y. Kim, D. R. Lee, and S. J. Park, Polym. Int., 52, 6-14 (2003)   DOI   ScienceOn
7 L. D. Lillwitz, Appl. Catalysis, A : General, 221, 337-358 (2001)   DOI   ScienceOn
8 Y M. Sun and C. S. Wang, J. Polym. Sci., 34, 1783 (1996)   DOI
9 S. Z. D. Cheng and B. Wunderlick, Macromolecules, 21, 789 (1988)   DOI   ScienceOn
10 L. S. Park and J. H. Yoon, Polymer (Korea), 18, 700 (1994)
11 J. M. Raquez, P. Degee, R. Narayan, and P. Dubois, Macromol. Rapid. Commun., 21, 1063 (2000)   DOI   ScienceOn
12 M. Guo and H. G. Zachmann, Macromolecules, 30, 2746-2750 (1997)   DOI   ScienceOn
13 G. Botelho, A. Queriros, and P. Gijsman, Polym. Degrad. Stab., 70, 299-304 (2000)   DOI   ScienceOn
14 G. P. Karayannidis, G. Z. Papageorgiou, D. N. Bikiaris, and E. V.Tourasanidis, Polymer, 39, 4129 (1998)   DOI   ScienceOn
15 K. Nakamae, T. Nishino, K. Tada, T. Kanamoto, and M. Ito, Polymer, 34, 3322-3324 (1993)   DOI   ScienceOn
16 R. Jakeways, J. L. Klein, and I. M. Ward, Polymer, 37, 3761-3762 (1996)   DOI   ScienceOn
17 U. Stier, F. Gahr, and W. Oppermann, J. Appl. Polym. Sci., 80, 2039-2046 (2001)   DOI   ScienceOn
18 G. Wu and J. A. Cuculo, Polymer, 40, 1011-1018 (1999)   DOI   ScienceOn
19 H. Zhang and I. M. Ward, Macromolecules, 28, 4179 (1995)