• Title/Summary/Keyword: ethylene carbonate

Search Result 98, Processing Time 0.028 seconds

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives (전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰)

  • Lee, Sung Jin;Cha, Eun Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.69-79
    • /
    • 2016
  • Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

A Study on the degradation mechanism of PAN-LiCLO$_4$ Polymer Electrolyte EC windows (PAN-LIClO$_4$ 계 고분자전해질 EC창의 열화 기구에 관한 연구)

  • 김용혁;김형선;조원일;조병원;윤경석;박인철
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 1997
  • Tungsten oxide and nickel oxide thin films were deposited onto ITO(Indium Tin Oxide) transparent glass by the E-beam evaporation and were used as a cathode and an anode for the EC(Electrochromic) smart window, respectively. Stoichiometric structures of the deposited films were investigated by the implementation of XPS(X-ray Photoelectron Spectroscopy) analysis and the results were $WO_{2.42}$ and $NiO_{0.44}$. This oxygen deficincy might affect affect the transparency of the thin films. The electrolyte for the EC smart windows was PAN-$LiCIO_4$ conducting polymer. EC(Ethylene Carbonate)and PC(Propylene Carbonate) were added as plasticizer to enhance ion conductivity. When the weight ratio of the EC : PC was 3 : 1, transmission difference and cycle life performance were tested. Polymer EC windows showed 40% $\Delta$T at 1.5V operating volage for 3,200 cycles. Structural degradation was observed by the SIMS(Secondary Ion Mass Spectroscopy) analysis and it was confirmed that structural degradation of polymer caused by the solvent evaporation was the main cause to degrade EC smart windows.

  • PDF

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Polymer Electrolytes Based on Poly(vinylidenefluoride-hexafluoropropylene) and Cyanoresin

  • Lee, Won-Jun;Kim, Seong-Hun
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Lithium gel electrolytes based on a mixed polymer matrix consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) and cyanoresin type M (CRM) were prepared using an in situ blending process. The CRM used in this study was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) (PVA) with a mole ratio of 1:1. The mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1. In this study, the presence of PVDF in the electrolytes helps to form a dimensionally stable film over a broad composition range, and decreases the viscosity. In addition, it provides better rheological properties that are suitable for the extrusion of thin films. However, the presence of HFP has a positive effect on generating an amorphous domain in a crystalline PVDF structure. The ionic conductivity of the polymer electrolytes was investigated in the range 298-333 K. The introduction of CRM into the PVDF-HFP/$LiPF_6$, complex produced a PVDF-HFP/CRM/$LiPF_6$ complex with a higher ionic conductivity and improved thermal stability and dynamic mechanical properties than a simple PVDF-HFP/$LiPF_6$, complex.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4 Treatment (인산 처리된 표면 개질 음극 석탄계 피치의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • To enhance electrochemical performances of anode materials, the surface of coal tar pitch (CTP) was modified by incorporating heteroatoms through chemical treatment with phosphoric acid ($H_3PO_4$). The prepared anode materials with modified CTP was analyzed by XRD, FE-SEM and XPS. The electrochemical performances of modified CTP were investigated by constant current charge/discharge test, rate performance, cyclic voltammetry and impedance tests using the electrolyte of $LiPF_6$ dissolved in the mixed organic solvents (ethylene carbonate : dimethyl carbonate = 1 : 1 vol% + vinylene carbonate 3 wt%). The coin cell using modified CTP ($H_3PO_4/CTP$ = 3 : 100 in weight) has better initial capacity and initial efficiency (489 mAh/g, 82%) than those of other composition coin cells. Also, it was found that the capacity retention was 86% after 30 cycles and the rate capability was 87% at 2 C/0.1 C.

A Kinetic Study on the Synthesis of Dimethylcarbonate by Using Immobilized Ionic Liquid Catalyst (고정화된 이온성 액체 촉매를 이용한 디메틸카보네이트 합성 반응에 대한 속도론적 고찰)

  • Kim, Dong-Woo;Kim, Dong-Kyu;Kim, Cheol-Woong;Koh, Jae-Cheon;Park, DaeWon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.332-336
    • /
    • 2010
  • Ionic liquid immobilized on mesoporous amorphous silica was prepared from the coupling of 1-(triethoxysilylpropyl)-3-n-alkyl-imidzolium halides with tetraethyl orthosilicate(TEOS) through template-free condensation under strong acidic conditions. The immobilized 1-n-butyl-3-methyl imidazolium bromide ionic liquid on amorphous silica(BMImBr-AS) was proved to be an effective heterogeneous catalyst for the synthesis of dimethyl carbonate(DMC) from transesterification of ethylene carbonate(EC) with methanol. High temperature, high carbon dioxide pressure and long reaction time were favorable for the reactivity of BMImBr-AS. Kinetic studies based on two step reactions revealed that the proposed reaction model fitted well the experimental data. The apparent activation energy was estimated to be 67.4 kJ/mol.

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.