Browse > Article

Polymer Electrolytes Based on Poly(vinylidenefluoride-hexafluoropropylene) and Cyanoresin  

Lee, Won-Jun (Department of Fiber and Polymer Engineering, Hanyang University)
Kim, Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University)
Publication Information
Macromolecular Research / v.16, no.3, 2008 , pp. 247-252 More about this Journal
Abstract
Lithium gel electrolytes based on a mixed polymer matrix consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) and cyanoresin type M (CRM) were prepared using an in situ blending process. The CRM used in this study was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) (PVA) with a mole ratio of 1:1. The mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1. In this study, the presence of PVDF in the electrolytes helps to form a dimensionally stable film over a broad composition range, and decreases the viscosity. In addition, it provides better rheological properties that are suitable for the extrusion of thin films. However, the presence of HFP has a positive effect on generating an amorphous domain in a crystalline PVDF structure. The ionic conductivity of the polymer electrolytes was investigated in the range 298-333 K. The introduction of CRM into the PVDF-HFP/$LiPF_6$, complex produced a PVDF-HFP/CRM/$LiPF_6$ complex with a higher ionic conductivity and improved thermal stability and dynamic mechanical properties than a simple PVDF-HFP/$LiPF_6$, complex.
Keywords
ionic conductivity; poly(vinylidenefluoride-hexafluoropropylene); in situ blending;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 91, 3659 (2004)   DOI   ScienceOn
2 K. W. Oh, S. H. Kim, and J. H. Bahk, J. Korean Fiber Soc., 39, 757 (2002)
3 J. Won, K. M. Lee, and Y. S. Kang, Macromol. Res., 14, 404 (2006)   과학기술학회마을   DOI
4 Q. Pei and O. Inganas, Synth. Met., 55, 3718 (1993)
5 T. F. Otero, J. Rodriguez, E. Angulo, and C. Santamaria, Synth. Met., 55, 3713 (1993)
6 I. Immanuel Selvaraj, S. Chaklanobis, and V. J Chandrasekhar, Electrochem. Soc., 142, 366 (1995)   DOI   ScienceOn
7 K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 88, 1225 (2003)   DOI   ScienceOn
8 S. H. Kim, J. K. Choi, and Y. C. Bae, J. Appl. Polym. Sci., 81, 948 (2001)   DOI   ScienceOn
9 B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, London, 1993
10 K. Almdal, J. Dyre, S. Hvdit, and O. Kramer, Poly. Gel Netw., 1, 5 (1993)   DOI   ScienceOn
11 J. M. Tarascon, A. S. Gozdz, C. Shmutz, F. Schokoohi, and P. C. Warren, Solid State Ionics, 49, 860 (1996)
12 J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews, Elsevier, London, 1987
13 J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Power Sources, 77, 183 (1999)   DOI   ScienceOn
14 S. H. Kim, K. W. Oh, and J. H. Bahk, J. Appl. Polym. Sci., 91, 4064 (2004)   DOI   ScienceOn
15 C. D. Doyle, Anal. Chem., 33, 77 (1961)   DOI
16 K. W. Oh, J. Korean Fiber Soc., 38, 309 (2001)
17 E. G. Han, E. A. Kim, and K. W. Oh, J. Korean Fiber Soc., 35, 515 (1998)
18 A. Mazzoldi, C. Degl' Innocenti, M. Michelucci, and D. De Rossi, Mater. Sci. Eng., 6, 65 (1998)   DOI   ScienceOn
19 T. F. Otero, E. Angulo, J. Rodriguez, and C. Santamaria, Electroanal Chem., 34, 369 (1992)
20 T. W. Lewis, G. M. Spink, G. G. Wallance, D. De Rossi, and M. Pachetti, Polym. Prepr., 38, 520 (1997)
21 S. H. Kim, K. W. Oh, and T. K. Kim, J. Appl. Polym. Sci., 96, 1035 (2005)   DOI   ScienceOn
22 C. W. Lee, H. S. Park, and J. G. Kim, Macromol. Res., 13, 96 (2005)   과학기술학회마을   DOI
23 K. Yamada, Y. Kume, and H. Tabe, Jpn. J. Appl. Phys., 37, 5798 (1998)   DOI
24 R. H. Baughman, Macromol. Chem. Macromol. Symp., 51, 193 (1991)