Polymer Electrolytes Based on Poly(vinylidenefluoride-hexafluoropropylene) and Cyanoresin

  • Lee, Won-Jun (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kim, Seong-Hun (Department of Fiber and Polymer Engineering, Hanyang University)
  • Published : 2008.04.30

Abstract

Lithium gel electrolytes based on a mixed polymer matrix consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) and cyanoresin type M (CRM) were prepared using an in situ blending process. The CRM used in this study was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) (PVA) with a mole ratio of 1:1. The mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1. In this study, the presence of PVDF in the electrolytes helps to form a dimensionally stable film over a broad composition range, and decreases the viscosity. In addition, it provides better rheological properties that are suitable for the extrusion of thin films. However, the presence of HFP has a positive effect on generating an amorphous domain in a crystalline PVDF structure. The ionic conductivity of the polymer electrolytes was investigated in the range 298-333 K. The introduction of CRM into the PVDF-HFP/$LiPF_6$, complex produced a PVDF-HFP/CRM/$LiPF_6$ complex with a higher ionic conductivity and improved thermal stability and dynamic mechanical properties than a simple PVDF-HFP/$LiPF_6$, complex.

Keywords

References

  1. J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews, Elsevier, London, 1987
  2. K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 88, 1225 (2003) https://doi.org/10.1002/app.11783
  3. B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, London, 1993
  4. S. H. Kim, J. K. Choi, and Y. C. Bae, J. Appl. Polym. Sci., 81, 948 (2001) https://doi.org/10.1002/app.1516
  5. K. W. Oh, H. J. Park, and S. H. Kim, J. Appl. Polym. Sci., 91, 3659 (2004) https://doi.org/10.1002/app.13603
  6. S. H. Kim, K. W. Oh, and J. H. Bahk, J. Appl. Polym. Sci., 91, 4064 (2004) https://doi.org/10.1002/app.13625
  7. K. W. Oh, S. H. Kim, and J. H. Bahk, J. Korean Fiber Soc., 39, 757 (2002)
  8. K. W. Oh, J. Korean Fiber Soc., 38, 309 (2001)
  9. E. G. Han, E. A. Kim, and K. W. Oh, J. Korean Fiber Soc., 35, 515 (1998)
  10. J. Won, K. M. Lee, and Y. S. Kang, Macromol. Res., 14, 404 (2006) https://doi.org/10.1007/BF03219102
  11. C. W. Lee, H. S. Park, and J. G. Kim, Macromol. Res., 13, 96 (2005) https://doi.org/10.1007/BF03219021
  12. R. H. Baughman, Macromol. Chem. Macromol. Symp., 51, 193 (1991)
  13. Q. Pei and O. Inganas, Synth. Met., 55, 3718 (1993)
  14. T. F. Otero, E. Angulo, J. Rodriguez, and C. Santamaria, Electroanal Chem., 34, 369 (1992)
  15. T. F. Otero, J. Rodriguez, E. Angulo, and C. Santamaria, Synth. Met., 55, 3713 (1993)
  16. A. Mazzoldi, C. Degl' Innocenti, M. Michelucci, and D. De Rossi, Mater. Sci. Eng., 6, 65 (1998) https://doi.org/10.1016/S0928-4931(98)00036-8
  17. K. Yamada, Y. Kume, and H. Tabe, Jpn. J. Appl. Phys., 37, 5798 (1998) https://doi.org/10.1143/JJAP.37.5798
  18. T. W. Lewis, G. M. Spink, G. G. Wallance, D. De Rossi, and M. Pachetti, Polym. Prepr., 38, 520 (1997)
  19. J. M. Tarascon, A. S. Gozdz, C. Shmutz, F. Schokoohi, and P. C. Warren, Solid State Ionics, 49, 860 (1996)
  20. J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Power Sources, 77, 183 (1999) https://doi.org/10.1016/S0378-7753(98)00193-1
  21. S. H. Kim, K. W. Oh, and T. K. Kim, J. Appl. Polym. Sci., 96, 1035 (2005) https://doi.org/10.1002/app.21435
  22. I. Immanuel Selvaraj, S. Chaklanobis, and V. J Chandrasekhar, Electrochem. Soc., 142, 366 (1995) https://doi.org/10.1149/1.2044013
  23. K. Almdal, J. Dyre, S. Hvdit, and O. Kramer, Poly. Gel Netw., 1, 5 (1993) https://doi.org/10.1016/0966-7822(93)90020-I
  24. C. D. Doyle, Anal. Chem., 33, 77 (1961) https://doi.org/10.1021/ac60169a022