• Title/Summary/Keyword: ethylene biosynthesis

Search Result 61, Processing Time 0.023 seconds

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

Ethylene Biosynthesis of an Alkalophilic Bacillus sp. Alk-7 (알카리성 Bacillus sp. Alk-7에 의한 Ethylene 생합성과 그 경로)

  • Bae, Moo;Kim, Mi-Ye
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.195-199
    • /
    • 1998
  • AH alkalophilic Bacillus SP. AIk-7, isolated from soil, produced ethylene. The characteristics of this microorganism is the ability to grow well under the alkaline condition, at pH 10.3. This strain is similar to Bacillus alkalophilus in terms of morphological, physiological and biological characteristics. In observation of relationship of cell growth and ethylene production according to incubation times, the ethylene synthesis mostly occur from the late exponential phase to the death phase of growth. The purpose of this paper is to study the effects of various substrates on the biosynthesis of ethylene in the intact cell and the cell-free system by the Bacillus sp. AIk-7. In both intact cell and cell-free extract, optimum conditions for ethylene production was achieved at pH 10.3 and 3$0^{\circ}C$. Ethylene was effectively produced from L-Met and 1-aminocyclopropane-1-carboxylic acid (ACC). In this case, ACC as the substrate on ethylene production were two fold higher than L-met at each concentration of substrates. On the other hand, the cell-free ethylene-forming system was used as a tool for the elucidation of the biochemical reaction involved in the formation of ethylene by Bacillus sp. AIk-7. Ethylene production in the cell-free system required the presence of manganese and cobalt ion to be stimulated a little. The result obtained in this work suggests that L-met and ACC may be a precursor more directly related to bacterial ethylene production than any other substrates tested.

  • PDF

Studies on Physiological Action of Ethylene in Rice Plant Ⅶ. Varietal Differences of Ethylene Evolution and Biosynthesis of Rice Seedling (벼에 대한 Ethylene의 생리작용에 관한 연구 제 7 보. 벼의 Ethylene 생성량 및 생합성의 품종간 차이)

  • Moon-Hee Lee;Yasuo, Ota
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 1985
  • To know the varietal differences of ethylene evolution, 55 rice varieties were tested at seedling stage. And, also, 6 rice varieties were tested the biosynthesis of ethylene production. The group of japonica varieties produced higher amount of ethylene than the indica and indica x japonica crossed varieties. The content of ACC in rice seedlings of japonica varieties was higher than in seedlings of indica and indica x japonica varieties. And, also, the conversion rate of mathionine and ACC to ethylene in seedling of japonica varieties was higher than in seedling of indica and indica x japonica varieties.

  • PDF

Ethylene Production and Expression of Two Ethylene Biosynthetic Genes in Senescing Flowers of Hosta ventricosa

  • Zhu, Xiaoxian;Hu, Haitao;Guo, Weidong;Chen, Jianhua;Wang, Changchun;Yang, Ling
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.261-268
    • /
    • 2014
  • Senescence of Hosta ventricosa flowers was firstly characterized as ethylene-sensitive since the deterioration of the tepal was accompanied by increased endogenous ethylene biosynthesis. The full-length cDNAs and DNAs of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) involved in ethylene biosynthesis were cloned from H. ventricosa flowers. The HvACS ORF with 1347 bp and two introns, encoded a polypeptide of 448 amino acids showing 79% homology with that in Musa acuminata. The HvACO ORF contained 957 bp and three introns, encoding a 318-residue polypeptide showing 83% homology with that in Narcissus tazetta. The timing of the induction of HvACS expression was in correspond to the timing of the increase in ethylene production, and that the up-regulation of HvACO transcript was closely correlated with an elevated ethylene production, but underwent a down-regulation in wounded leaves with elevated ethylene emission. The results, together with expression analysis in vegetative tissues, suggested that both HvACS and HvACO were specifically regulated by flower senescence.

Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola (Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질)

  • Bae, Moo;Kweon, Hea-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • - The purpose of this work is to investigate the effects of various substrates on biosynthesis of ethylene by the Kudzu strain of Pseudomonas syn'ngae pv. Phaseolicola causing halo blight. In the intact cell of P. sym'ngue, optimal condition for ethylene production was achieved at p1-I 7.5 and $30^{\circ}C$ for 9 to 10 hours of culture. Ethylene was most effectively produced from amino acids such as Asn, Gln, Asp ans Glu, compared to those of various kinds of sugars. While ethylene production from $\alpha$-ketoglutarate ($\alpha$-KG) was gradually increased throughout 51 hours incubation period tested. Ethylene production derived from citrate, $\alpha$-KG and oxalacetate as well as a few amino acids was further enhanced by the addition of histidine or arginine. In cell-free ethylene-forming system, ethylene was most effectively produced from $\alpha$-KG, compared to those from citrate, oxalacetate, Glu, Arg, or Asp, at 0.5 mM among the range from 0.25 mM to 5 mM. Anlinooxyacetate, an inhibitor of a pyridoxal phosphate-linked enzyme, completely inhibited ethylene evolution derived from Glu but not affect that derived from $\alpha$-KG. The results obtained in this work suggest that $\alpha$-KG might be a direct precursor of ethylene production in this organism than any other substrates tested.

  • PDF

Towards the Development of Long-Life Crops by Genetic Engineering of Ethylene Sensitivity

  • Ezura, Hiroshi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2000
  • Food production is a major role of agriculture. It has been projected that the world population continues to increase by the middle of the 21st century, and the population growth results in raising a serious problem of food shortage. Thus we have to increase food as possible. A considerable amount of crops have been abandoned due to short-life after postharvest. Ethylene is a factor responsible for the postharvest loss in crops, especially horticultural crops. If we can reduce ethylene production or sensitivity by genetic engineering, we can develop, so called,“long-life crop”conferring long postharvest lives. During last two decades, intensive research for molecular dissection of ethylene biosynthesis has been carried out, and the researchers have succeeded in engineering ethylene productivity in some crops. On the other hand, after the successful isolation of Arabidopsis ethylene receptor gene ETR1, the homolog genes have been isolated in various plant species. Currently the characterization of these genes and alteration of ethylene sensitivity using the genes are in progress. This review summarizes current progress in the analysis of these genes, and discusses genetic engineering of ethylene sensitivity using these genes.

  • PDF

Changes in Polygalacturonase and Ethylene Biosynthesis of Three Varieties of Apple During Fruit Ripening

  • Kim, Se Hee;Han, Sang Eun;Lee, Hye Eun;Cho, Mi-Ae;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.481-487
    • /
    • 2010
  • The ripening behavior of three apple cultivars, 'Tsugaru', 'Hongro' and 'Fuji' was distinctive and the involvement of POLYGALACTURONASE(PG) in the fruit softening process was confirmed to be ethylene dependent. Fruit softening is genetically coordinated by the action of several cell wall enzymes, including PG which depolymerizes cell wall pectin. Also, loss of firmness is associated with increasing of the ripening hormone, ethylene. In this work, climacteric ripening of three apple cultivars, Tsugaru, Hongro and Fuji, producing different ethylene levels and ripening responses, was examined. Correspondingly in Fuji, a linear and basal ethylene level was observed over the entire period of measurements, and Tsugaru and Hongro displayed a typical climacteric rise in ethylene production. Transcript accumulation of genes involved in ethylene biosynthesis (MdACS3 and MdACO1) and MdPG1 was studied in Tsugaru, Hongro and Fuji cultivars. Expression of MdACO1 transcripts was shown in all three ripened apple fruits. However, the MdACS3 and MdPG1 were transcribed differently in these cultivars. Comparing the MdPG1 of 'Tsugaru', 'Hongro' and 'Fuji', structural difference was discovered by genomic Southern analysis. Overall results pointed out that MdACS3 and MdPG1 play an important role in regulation of fruit ripening in apple cultivar.

Effect of TIBA on the Brassiolide-induced Gravitropic Response in the Primary Roots of Maize (옥수수 일차뿌리에서 TIBA가 brassinolide에 의해 유도된 굴중성 반응에 미치는 영향)

  • Kang, Byung-Hee;Park, Jea-Hye;Kim, Jong-Sik;Jang, Soo-Chul;Kim, Seung-Ki;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1139-1144
    • /
    • 2009
  • It has been known that brassiolide (BL) increased the positive gravitropic response and ethylene production in maize roots. This study examined the relationship between the BL-induced gravitropic response and ethylene Production. The ethylene production was inhibited to about 90% of the control by the treatment of $10^{-4}$ M aminoethoxyvinylglycine (AVG), the ethylene synthesis inhibitor. However, the gravitropic response did not show any significant changes compared to the control at $10^{-4}$ M AVG. In the case of treatment of AVG with BL, the ethylene production decreased to 60% of the control. However, the gravitropic response increased to the level which was induced by BL. Cobalt ions, another ethylene biosynthesis inhibitor, inhibited ethylene production, but not gravitropic response. When roots were treated with BL and cobalt ions, they showed the inhibition of ethylene production and promotion of gravitropic response. To elucidate the possibility that the effect of BL is related to auxin transport, roots were treated with TIBA (2,3,5-triiodobenzoic acid), an auxin transport inhibitor. Both treatment of TIBA alone and TIBA with BL stimulated ethylene production to about 96% and 132%, respectively. However, gravitropic response was completely inhibited in both treatments. Further, roots treated with BL in the presence of TIBA and IAA showed a negative gravitropic response, which means that IAA accumulates in the upper side of horizontal roots. Root elongation was also stimulated in this treatment. Taken together, these results suggest that BL might affect the differential distribution of internal IAA on roots, causing the regulation of positive gravitropic response.

Stress-induced biphasic ethylene and ROS biosynthesis are synergistically interacted in cell damage (스트레스에 의한 식물세포 손상에서 Biphasic Reactive Oxygen Species(ROS)와 Ethylene 생합성의 Synergism 효과)

  • Ji, Na-Ri;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Although reactive oxygen species (ROS) are inevitable by-products of many redox reactions in eukaryotic cells, they play a crucial role as signaling molecules in many cellular processes for development and defense response to abiotic stresses. The biphasic ROS production which was peaked twice in a first transient phase and a second massive phase was occurred after treatment of abiotic stress such as oxidative stress, high salinity. This biphasic generation of ROS was followed by the biphasic production of stress hormone, ethylene. The mechanism of interactions between ROS and ethylene biosynthesis is studied in tobacco (Nicotiana tabaccum L.) plants under the abiotic stresses. The stress-induced ethylene production was significantly inhibited in RbohD-AS and RbohF-AS, in which antisense expression of NADPH oxidase genes was performed. The accumulation of ROS, which was determined by DAB and DCFH-DA staining, was significantly decreased after abiotic stresses in transgenic plants. The suppression of signaling with ethylene and ROS induced more tolerance in response to abiotic stress. The transgenic plants were more tolerant in MS medium supplemented with salinity stress in contrast with wild-type. Stress-induced cell damage determined by DNA fragmentation was decreased at phase II in those transgenic plants. Therefore, the first burst of ROS is more responsible for making a role as a signaling molecule during stress-induced response. These results suggested that ethylene and ROS act in a positive feedback cycle that results in mutual enhancement of ethylene and ROS production during stress-induced cell death.

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF