• Title/Summary/Keyword: ethyl methacrylate

Search Result 120, Processing Time 0.031 seconds

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

The Kinetics of Radical Copolymerization of Styrene with Alkyl Methacrylate in a CSTR (연속반응기에서 스티렌과 메타크릴산 알킬의 라디칼 공중합 반응속도론)

  • Kim, Nam Seok;Seul, Soo Duk;Cheong, Young Eon;Park, Keun Ho;Choi, Jong jueng
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.796-803
    • /
    • 1999
  • Solution copolymerization of styrene(St.) with methyl methacrylate(MMA), ethyl methacrylate(EMA) and n-butyl methacrylate(BMA) was carried out with benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3hours, respectively. The monomer reactivity ratios, $r_1(St.)$ and $r_2(RMA)$ determined by both the Kelen-Tudos method and the Fineman-Ross method were $r_1(St.)=0.60(0.61),\;r_2(MMA)=0.59(0.60);\;r_1(St.)=0.65(0.62),\;r_2(EMA)=0.55(0.52);\;r_1(St.)=0.75(0.67),\;r_2(BMA)=0.63(0.56)$. The cross-termination factor $\Phi$ of the copolymer over the entire St. compositions ranged from 0.26 to 0.96. The $\Phi$ factors of St.-RMA copolymer were increased with increasing St. content. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time.

  • PDF

Manufacture of Alkyl Acrylate Multi Core-shell Composite Particle (알킬 아크릴레이트계의 다중 Core-shell 복합입자의 제조)

  • Cho, Dae-Hoon;Choi, Sung-Il;Go, Hyun-Mi;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2011
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomer such as methyl methacrylate (MMA), n-butyl methacrylate (BMA), and shell monomer such as MMA, BMA, stylene (St), 2-hydroxyl ethyl methacrylate (2-HEMA) and acrylic acid (AA) in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, morphology, tensile strength and elongation. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(BMA/St/AA) shell composite particle was excellent as 98%. In the case of the concentration of 0.03 wt% SDBS, the particle size of BMA core-(MMA/St/AA) shell composite particle was high as $0.47{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 2 points of glass transition temperatures appear for general core-shell composite particles. We showed that it is possible to adjust glass transition temperatures according to the kind and composition of the inner shell monomer that it is can be used as a adhesive binder material with improved adhesive power.

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Synthesis and Adhesion Properties of UV Curable Acrylic PSAs for Semiconductor Manufacturing Process (반도체 제조 공정용 UV 경화형 아크릴 점착제의 합성과 점착 특성)

  • Lee, Seon Ho;Lee, Sang Keon;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • UV curable acryl resin, pressure-sensitive adhesives (PSAs), are used in many different parts in the world. In particular, PSAs has been used in the wafer manufacturing process of semiconductor industry. As wafers become much thinner, UV curable PSAs require more proper adhesion performance. In this study, acrylic PSAs containing hydroxyl groups were synthesized using monomers of 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, styrene monomer and 2-hydroxyethyl acrylate. Isocyanate modified UV curable PSAs were then prepared by the adduct reaction that facilitates the UV curing property via controlling the amount of methacryloyloxyehtyl isocyanate. The proper adhesion performance and UV curing behavior of UV curable PSAs with various hydroxyl values were studied, and experimental conditions were then optimized to raise the efficiency of wafer manufacturing process. It was found that in case of using the equivalent ratio of 1 : 1 isocyanate hardener used in the UV curable PSAs, the peel strength before the UV curing process decreased as the amount of hydroxyl groups increased in the PSAs. The peeling adhesive strength was also decreased with increasing UV dose due to high curing characteristics.

A Exposure Concentration and Composition of Organic Solvents by the type of workplace in Mixed Organic Solvents use Companies (혼합 유기용재 취급작업장의 공정별 유기용제 구성성분 및 노출농도)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.75-87
    • /
    • 2000
  • This study was conducted to investigate the composition, detection rate, and exposure concentration of the airborne organic solvents from the working environmental measurements of total 4181 different type of workplace in 3280 workshops in which organic solvents are used. The results are as follows : 1. For all workplaces except washing, the detection rate of toluene and benzene were 80% and 20%, respectively. 2. The number of detection of aromatic hydrocarbon and ketone were ranged 1.41-2.39 and 0.62-0.90 per a sample in all workplaces except that showed 1.01 in washing. 3. The mean of detection frequency was $3.3{\pm}2.5$ in all workplaces and there was no significant difference among that of each workplaces. 4. The airborne concentrations of methyl methacrylate, ethyl alcohol, methyl alcohol, and ethyl ether were $43.5{\pm}47.0{\;}ppm,{\;}22.5{\pm}51.0{\;},{\;}19.8{\pm}57.6{\;}ppm,{\;}19.8{\pm}40.14{\;}ppm, respectively. And those of cellosolve, methyl cellosolve acetate, and N,N-dimethyl formamide were $4.1{\pm}4.5$ ppm, $4.0{\pm}18.5{\;}ppm$, and $5.6{\pm}7.7{\;}ppm$, respectively and exceeded the occupational exposure limits enforced by Ministry of Labor in Korea. As the above results, it is suggested that the components of organic solvents should be indentified to efficient management, of working environment and conducted the engineering control for the workplaces using the hazardous materials.

  • PDF

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

Phase Separation Behavior of the Blends of PVDF and Carbonyl-containing Polymers in the Presence of an External Electric Field (PVDF와 카르보닐기 함유 고분자 블렌드의 전장하에서의 상거동)

  • 김갑진;이종순;최은화
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.317-318
    • /
    • 2003
  • 전기활성고분자인 poly(vinylidene fluoride)(이하 PVDF로 약기)와 전기비활성 고분자와의 혼화성블렌드에서 외부전장이 이 블렌드의 상분리거동에 미치는 영향을 조사하기에 적합한 전기비활성고분자를 찾은 결과 측쇄에 C=O기를 갖는 poly(ethyl methacrylate)(이하 PEMA)와 주쇄에 C=O기를 갖는 poly(1,4-butylene adipate)(이하 PBA로 약기)가 좋은 후보 고분자로 사용가능함을 보였다. 측쇄에 C=O기를 갖는 고분자인 PMMA와 PVDF와의 블렌드에서 PVDF의 융점보다 상당히 높은 온도인 35$0^{\circ}C$ 이상의 온도에서 lower critical solution temperature (이하 LCST로 약기) 거동을 보이는 것으로 알려져 있기 때문에 [1] 실제로 이들 블렌드계에서 열분해를 배제하면서 LSCT거동을 실험적으로 관찰하기는 불가능하다. (중략)

  • PDF

The electrical properties change of TIPS-Pentacene due to polymer blending (Polymer blending에 따른 TIPS-Pentacene의 특성 변화)

  • Lim, Chang-Yoon;Kim, Yong-Hoon;Han, Jeong-In
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1499-1500
    • /
    • 2011
  • In this paper, we investigated the electrical properties change of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) depending on polymer blend. We fabricated organic thin film transistor (OTFT) using blending solution of small molecule and polymer. In this study poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV), poly (9-vinylcarbazole) (PVK), poly [N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] (poly-TPD), poly(${\alpha}$-methyl styrene), Poly(methyl methacrylate) (PMMA) are used as a polymer. Fabricated OTFT with blending solution of TIPS-pentacene and PVK shows best performance in this experiment. OTFT fabricated by blending solution of TIPS-pentacene and PVK shows field effect mobility of 0.0189 $cm^2/V{\cdot}s$, on/off ratio of 1.9E-5 and threshold voltage of 7.4 V.

  • PDF

Preparation and Characterization of Hydrogels containing Silicone or Fluorine

  • Kim, Eui Seok;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.650-656
    • /
    • 2017
  • The water-swollen hydrogels containing silicone or fluorine were prepared by copolymerization of 2-hydroxy ethyl methacylate (HEMA) with 3-(trimethoxysilyl)propyl methacrylate(SM) or 2,2,2-trifluoroethyl acrylate(FA). When the content of SM or FA increased in copolymers, there was tendency of water absorbance to decrease, whereas contact angles to increase. The hydrogels containing FA showed 2 ~ 4% higher water content and 4 ~ 5% lower contact angles compared to that of SM. Tensile strengths decreased as the content of SM increased. However, FA exhibited strength of $2.2Mpa/cm^2$ which is similar to $2.3Mpa/cm^2$ of B. FA, which implies comparatively low adherence, hence, showed better protein resistance properties than SM-based hydrogel. The photo-polymerization was also applied instead of thermal polymerization to enhance the energy efficiency. As a result, the reaction yield reached over 95% within 1 minute.