• Title/Summary/Keyword: ethanol tolerance

Search Result 116, Processing Time 0.021 seconds

Study on the Factors Affecting the Ethanol Tolerance of Yeast Strains by fermentation Temperature (발효온도에 의한 효모의 에탄올 내성 요인 연구)

  • 장형욱;유연우
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 1992
  • This study is to investigate the ethanol tolerance of yeast strains related to fatty acid composition and intracellular ethanol concentration for various fermentation temperatures. The maximum accumulation of ethanol in the cells was decreased by lowering the fermentation temperature, while unsaturated fatty acid content was increased by decreasing the fermentation temperature. Thus, we found that the increase of ethanol accumulation in cells resulted in the decrease of unsaturated fatty acid content. Therefore, it was suggested that the composition of unsaturated fatty acids in the cell membrane be strongly related to the diffusion of ethanol from cell to medium.

  • PDF

Breeding of Ethanol-producing and Ethanol-tolerant Saccharomyces cerevisiae using Genome Shuffling (Genome shuffling을 이용한 에탄올 생산 및 내성 효모 균주의 육종)

  • Park, A-Hwang;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1192-1198
    • /
    • 2013
  • To improve yeast strains for bioethanol production, yeasts with ethanol tolerance, thermotolerance, and ${\beta}$-1,3-glucanase activity were bred using yeast genome shuffling. Saccharomyces cerevisiae $BY4742{\Delta}exg1$/pAInu-exgA, which has extracellular ${\beta}$-1,3-glucanase activity, and the Aspergillus oryzae and S. cerevisiae YKY020 strains, which exhibit ethanol tolerance and thermotolerance, were fused by yeast protoplast fusion. Following cell fusion, four candidate cells (No. 3, 9, 11, and 12 strains) showing thermotolerance at $40^{\circ}C$ were selected, and their ethanol tolerance (7% ethanol concentration) and ${\beta}$-1,3-glucanase activity were subsequently analyzed. All the phenotypes of the two parent cells were simultaneously expressed in one (No. 11) of the four candidate cells, and this strain was called BYK-F11. The BYK-F11 fused cell showed enhanced cell growth, ethanol tolerance, ${\beta}$-1,3-glucanase activity, and ethanol productivity compared with the $BY4742{\Delta}exg1$/pAInu-exgA and YKY020 strains. The results prove that a new yeast strain with different characters and the same mating type can be easily bred by protoplast fusion of yeasts.

The Conditions Affecting Ethanol Tolerance of Yeast strains in Alcohol Ferwlentation - Study on the Aeration and Lipid Addition (알콜발효에서 효모의 에탄올 내성 조건-통기와 lipid첨가에 대한 연구)

  • 김형진;장형욱유연우
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.172-176
    • /
    • 1989
  • The alcohol fermentation was carried out to study the effect of aeration and unsaturated fatty acids added on the ethanol tolerance of Saccharomyces cerevisiae STV89 and Kluyveromyces fragilis CBS397. The cell growth rate and ethanol production rate was stimulated by aeration and the cell mass production and ethanol production were also substantially improved. With respect to strains, the maximum specific growth rate and overall ethanol productivity of K. fragilis under aerated condition were 6.4 fold and 4.4 fold higher than those of strictly anaerobic condition, although those of S. cerevisiae were increased 1.7 times and 2.3 times by aeration. The addition of ergosterol, linoleic acid and oleic acid also improved the cell growth and ethanol production of S. cerevisiae and K. fragilis. Thus it was found that oxygen and unsaturated fatty acids added played a decisive role on the increase of ethanol tolerance of yeast strains.

  • PDF

Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit

  • Lee, Jong-Sub;Park, Eun-Hee;Kim, Jung-Wan;Yeo, Soo-Hwan;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1253-1259
    • /
    • 2013
  • The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and $35^{\circ}C$, respectively. Under this growth condition, S. cerevisiae NK28 produced $98.9{\pm}5.67$ g/l ethanol in 24 h with a volumetric ethanol production rate of $4.12{\pm}0.24g/l{\cdot}h$. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.

$\alpha$-Amylase와 Glucoamylase를 동시에 분비하는 배수체 재조합효모에 의한 전분기질로 부터의 에탄올 생산

  • Park, Sun-Young;Kim, Min-Soo;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 1996
  • To improve the fermentation characteristics of the haploid starch-fermenting recombinant yeast strain K114/YIpMS$\Delta$R(LEU2/URA3) secreting both $\alpha$-amylase and glucoamylase was rare-mated with polyploid industrial yeast Saccharomyces sp. K35. The K35 strain had good fermentation-characteristics such as ethanol-tolerance, high temperature and sugar-tolerance, and high fermentation rate. Among the resulting 66 hybrids, the best strain RH51 was selected. The RH51 exhibited amylolytic activity of K114/YIpMS$\Delta$R(LEU2/URA3) as well as ethanol and sugar tolerance of K35. The optimum temperature of hybrid RH51 for starch fermentation was 34$\circ$C which was same as that of K35 but different from that (30$\circ$C) of K114/YIpMS$\Delta$R(LEU2/URA3). The optimum pH was 5.0. The optimum size of inoculum was 2% as the pellet (w/v) of yeast cells. The hybrid strain RH51 produced 7.0% ethanol (w/v) from 20% (w/v) soluble starch while K35 formed almost no ethanol, 0.3% (w/v). RH51 strain produced 7.5% (w/v) ethanol after 8 days in a 2.5 l fermenter containing 800 ml of 20% (w/v) soluble starch. The residual starch content in the fermentation medium was 1.68% (w/v), and therefore almost all the starch was fermented completely.

  • PDF

Selection of an Ethanol Tolerant Clostridium thermohydrosulfuricum Strain

  • PARK, YOUNG-MIN;CHUL-HO KIM;SANG-KI RHEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.226-229
    • /
    • 1992
  • An ethanol tolerant mutant was selected by successive transfers of Clostridium thermohydrosulfuricum ATCC 33223 into the media with progressively higher ethanol concentrations. The growth kinetics of the mutant were characterized under various growth conditions. Physiological differences such as enhanced growth, tolerance to various solvents, alteration of the optimum temperature and the ratio of end products during fermentation were noticed in the mutant.

  • PDF

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

Isolation and characteristics of hyper-butanol producing OBT7 mutant of Clostridium saccharoperbutylacetonicum N1-4 (클로스트리디움 싸카로퍼부틸아세토니컴 N1-4주(株)로부터 부타놀 다량생산주(株) OBT 돌연변이의 분리와 특성)

  • Ahn, Byoung-Kwon
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • 1) OBT7 mutant was isolated by W light-butanol tolerance from Clostridium saccharoperbutylacetonicm ATCC 13564 (N1-4 strain). The mutant produced 16.5 g/l (1.4-fold increase) of n-butanol, 4.65 g/l (1.5-fold increase) of acetone, and 21.5 g/l of total solvent. It was suggested that clostridial bacteria producing n-butanol does not have a poor effect on misrepair via an error-prone pathway by UV light-butanol tolerance. 2) Compared to glucose fermentation, in mannitol fermentation, OBT7 mutant did not produce acetone and acetic acid. And the ratios of n-butanol and ethanol to total solvents increased by 10.3% and 10.5%, respectively, totalling 20.8%, while the ratio of acetone was decreased by 21.2%. Also the maximum ratio of n-butanol to total solvents reached 94.8%. These results indicated that oxidized compound (acetone, acetic acid, and butyric acid) was converted to the reduced compounds (n-butanol, and ethanol). Therefore, mannitol can be used to eliminate by-products of oxidized compound.

  • PDF

Construction of Yeast Strain Suitable for Bioethanol Production by Using Fusion Method (융합법을 이용한 바이오에탄올 생산에 적합한 효모균주의 구축)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • To construct useful yeast strain for bioethanol production, we improved yeast harboring various phenotypes by using yeast protoplast fusion method. In this study, S. cerevisiae BYK-F11 strain which have ethanol tolerance, thermotolerance and ${\beta}-glucanase$ activity and P. $stipitis{\Delta}ura$ strain which has xylose metabolism pathway were fused by genome shuffling. P. $stipitis{\Delta}ura$ strain was constructed for protoplast fusion by URA3 gene disruption, resulting in uracil auxotroph. By protoplast fusion, several fused cells were selected and BYKPS-F8 strain (fused cell) showing both karyotypes from two parent strains (S. cerevisiae BYK-F11 and P. $stipitis{\Delta}ura$ strain) among 22 fused cells was finally selected. Sequentially, various phenotypes such as ${\beta}-glucanase$ activity, xylose utility, ethanol tolerance, thermotolerance and ethanol productivity were analyzed. The BYKPS-F8 strain obtained ${\beta}-glucanase$ activity from BYK-F11 strain and 1.2 fold increased xylose utility from P. $stipitis{\Delta}ura$ strain. Also, the BYKPS-F8 strain showed thermotolerance at $40^{\circ}C$ and increased ethanol tolerance in medium containing 8% ethanol. In this fused cell, 7.5 g/l ethanol from 20 g/l xylose was produced and the multiple phenotypes were stably remained during long term cultivation (260 hr). It was proved that novel biological system (yeast strains) is easily and efficiently bred by protoplast fusion among yeasts having different genus.

Comparative analyses of susceptibility to chemicals associated with fermentation between Drosophila melanogaster and Drosophila suzukii

  • KIM, YiSeul;LEE, Sungho;KIM, Yeong Ho;KIM, Young Ho
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.514-521
    • /
    • 2018
  • Drosophila melanogaster Meigen and Drosophila suzukii Matsumura are taxonomically close Drosophila species belonging to the family Drosophilidae and melanogaster group. D. melanogaster is thought to be evolutionarily adapted to overripe, decaying, and fermented fruits, in which large amounts of chemicals such as ethanol, acetic acid, and 2-phenylethanol are produced, whereas, D. suzukii is attracted to fresh ripening fruit. Considering the distinct habitats of the two flies, D. suzukii is hypothesized to exhibit higher susceptibility to these chemicals than D. melanogaster. Therefore, in this study, we investigated the survival rate of the flies at various concentrations of three chemicals (2-phenlyethanol, acetic acid, and ethanol) and calculated the lethal concentration (LC) values to compare the tolerance and susceptibility of D. melanogaster and D. suzukii to the chemicals. Our results revealed that D. melanogaster exhibited higher tolerance than D. suzukii to all chemicals, supporting the hypothesis of different evolutionary adaptations to distinct habitats of the two flies.