Browse > Article
http://dx.doi.org/10.4014/jmb.1307.07050

Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit  

Lee, Jong-Sub (Department of Food Science and Biotechnology, Kangwon National University)
Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University)
Kim, Jung-Wan (Division of Life Sciences, University of Incheon)
Yeo, Soo-Hwan (Fermented Food Science Division, National Academy of Agricultural Science, RDA)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.9, 2013 , pp. 1253-1259 More about this Journal
Abstract
The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and $35^{\circ}C$, respectively. Under this growth condition, S. cerevisiae NK28 produced $98.9{\pm}5.67$ g/l ethanol in 24 h with a volumetric ethanol production rate of $4.12{\pm}0.24g/l{\cdot}h$. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.
Keywords
Saccharomyces cerevisiae; fermentation; ethanol; tolerance; fermentation inhibitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, et al. 2004. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537-542.   DOI   ScienceOn
2 Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 2.   DOI   ScienceOn
3 Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.   DOI   ScienceOn
4 Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, et al. 2012. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J. Biosci. Bioeng. 114: 144-149.   DOI   ScienceOn
5 Boneau CA. 1960. The effects of violations of assumptions underlying the t test. Psychol. Bull. 57: 49-64.   DOI   ScienceOn
6 Borole A P, M ielenz JR, V ish nivetskaya T A, H amilton CY. 2009. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2: 7.   DOI   ScienceOn
7 Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. 2008. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1: 3.   DOI   ScienceOn
8 Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20: 200-206.
9 Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae $VS_{3}$. Bioresour. Technol. 100: 2404-2410.   DOI   ScienceOn
10 D'amore T, Stewart GG. 1987. Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322-330.   DOI   ScienceOn
11 Gao R, Yuan X, Li J, Wang X, Cheng X, Zhu W, Cui Z. 2012. Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J. Microbiol. Biotechnol. 22: 1148-1154.   DOI   ScienceOn
12 Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C. 2012. Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Microbiology 81: 201-207.   DOI
13 Haque M A, Nath Barman D, Kang TH, K im MK, K im J, Kim H, et al. 2012. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J. Microbiol. Biotechnol. 22: 1681-1691.   DOI   ScienceOn
14 Keating JD, Panganiban C, Mansfield SD. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206.   DOI   ScienceOn
15 Hawkins GM, Doran-Peterson J. 2011. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels 4: 49.   DOI   ScienceOn
16 Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 1: 497-506.   DOI   ScienceOn
17 Horvath IS, Taherzadeh MJ, Niklasson C, Liden G. 2001. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 75: 540-549.   DOI   ScienceOn
18 Koppram R, Albers E, Olsson L. 2012. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol. Biofuels 5: 32.   DOI   ScienceOn
19 Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ. 1999. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77: 91-103.   DOI
20 Kumar C, Sharma R, Bachhawat AK. 2003. Investigations into the polymorphisms at the ECM38 locus of two widely used Saccharomyces cerevisiae S288C strains, YPH499 and BY4742. Yeast 20: 857-863.   DOI   ScienceOn
21 Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.   DOI   ScienceOn
22 Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46-55.   DOI   ScienceOn
23 Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ. 2000. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84-86: 617-632.   DOI   ScienceOn
24 Lee HJ, Ahn SJ, Seo YJ, Lee JW. 2013. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 130: 211-217.   DOI   ScienceOn
25 Lee YJ, Choi YR, Lee SY, Park JT, Shim JH, Park KH, et al. 2011. Screening wild yeast strains for alcohol fermentation from various fruits. Mycobiology 39: 33-39.   DOI   ScienceOn
26 Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90: 1573-1586.   DOI
27 Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580.   DOI   ScienceOn
28 Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS. 2011. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol. Bioeng. 108: 2865-2875.   DOI   ScienceOn
29 Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM. 2008. Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol. Bioeng. 101: 894-902.   DOI   ScienceOn
30 Wahlbom CF, Hahn-Hagerdal B. 2002. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78: 172-178.   DOI   ScienceOn
31 Wu M, Wang M, Liu J, Huo H. 2008. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnol. Prog. 24: 1204-1214.   DOI   ScienceOn
32 Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, et al. 2012. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 94: 1667-1678.   DOI   ScienceOn
33 Zh ang Q, F u Y, W ang Y, H an J , Lv J , Wang S . 2012. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. J. Appl. Microbiol. 112: 280-288.   DOI   ScienceOn
34 Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.   DOI   ScienceOn