Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.10.1192

Breeding of Ethanol-producing and Ethanol-tolerant Saccharomyces cerevisiae using Genome Shuffling  

Park, A-Hwang (Department of Biomaterial Control, Dong-Eui University)
Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Journal of Life Science / v.23, no.10, 2013 , pp. 1192-1198 More about this Journal
Abstract
To improve yeast strains for bioethanol production, yeasts with ethanol tolerance, thermotolerance, and ${\beta}$-1,3-glucanase activity were bred using yeast genome shuffling. Saccharomyces cerevisiae $BY4742{\Delta}exg1$/pAInu-exgA, which has extracellular ${\beta}$-1,3-glucanase activity, and the Aspergillus oryzae and S. cerevisiae YKY020 strains, which exhibit ethanol tolerance and thermotolerance, were fused by yeast protoplast fusion. Following cell fusion, four candidate cells (No. 3, 9, 11, and 12 strains) showing thermotolerance at $40^{\circ}C$ were selected, and their ethanol tolerance (7% ethanol concentration) and ${\beta}$-1,3-glucanase activity were subsequently analyzed. All the phenotypes of the two parent cells were simultaneously expressed in one (No. 11) of the four candidate cells, and this strain was called BYK-F11. The BYK-F11 fused cell showed enhanced cell growth, ethanol tolerance, ${\beta}$-1,3-glucanase activity, and ethanol productivity compared with the $BY4742{\Delta}exg1$/pAInu-exgA and YKY020 strains. The results prove that a new yeast strain with different characters and the same mating type can be easily bred by protoplast fusion of yeasts.
Keywords
Yeast protoplast fusion; ethanol tolerance; thermotolerance; ${\beta}$-glucanase; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Attfield, P. V. 1997. Stress tolerance: the key to effective strains of industrial bakers yeast. Nat Biotechnol 15, 1351-1357.   DOI   ScienceOn
2 Bajwa, P. K., Pinel, D., Martin, V. J., Trevors, J. T. and Lee, H. 2010. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81, 179-186.   DOI   ScienceOn
3 Bara, M. T. F., Lima, A. L. and Ulhoa, C. J. 2003. Purification and characterization of an exo-${\beta}$-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219, 81-85.   DOI   ScienceOn
4 Dai, M. H. and Copley, S. D. 2004. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70, 2391-2397.   DOI   ScienceOn
5 Guegen, Y., Chemardin, P., Janbon, G., Arnaud, A. and Galzy, P. 1996. A very efficient ${\beta}$-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J Agric Food Chem 44, 2336-2340.   DOI   ScienceOn
6 Harashima, S., Takagi, A. and Oshima, Y. 1984. Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol Cell Biol 4, 771-778.   DOI
7 Hida, H., Yamada, T. and Yamada, Y. 2007. Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbio Biotech 73, 1387-1393.   DOI   ScienceOn
8 Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160, 1084-1093.   DOI   ScienceOn
9 Jeon, H. T., Park, U. M. and Kim, K. 2011. The use of aureobasidin A resistant gene as the dominant selectable marker for the selection of industrial yeast hybrid. Korean J Microbiol Biotechnol 39, 111-118.   과학기술학회마을
10 Jijakli, M. H. and Lepoivre, P. 1998. Characterization of an exo-${\beta}$-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytiscinerea on apples. Phytopathology 88, 335-343.   DOI   ScienceOn
11 Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimazation for production of exo-${\beta}$-1,3-glucanase (laminarase) from Aspergillus oryzae in Saccharomyces cerevisiae. Korean Soc Biotech Bioeng 26, 427-432.
12 Patnaik, R., Louie, S., Gavrilovic, V., Stemmer, W. P. C., Ryan, C. M. and Cardayre, S. 2002. Genome shuffling of lactobacillus for improved acid tolerance. Nature Biotech 20, 707-712.   DOI   ScienceOn
13 Lee, S. M., Kim, J. H., Cho, H. Y., Joo, H. and Lee, J. H. 2009. Production of bio-ethanol from brown algae by physicochemical hydrolysis. J Korean Ind Eng Chem 20, 517-521.   과학기술학회마을
14 Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S. and Kong, H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47, 395-   DOI   ScienceOn
15 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 31, 426-428.   DOI
16 Pitson, S. M., Seviour, R. J. and McDougall, B. M. 1993. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol 15, 178-192.   DOI   ScienceOn
17 Sheehan, C. and Weiss, A. S. 1990. Yeast artificial chromosome: rapid extraction for high resolution analysis. Necleic Acids Res 18, 2193.   DOI   ScienceOn
18 Shi, D. J., Wang, C. L. and Wang, K. M. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Mircobiol Biotechnol 36, 139-147.
19 Shoseyov, O., Bravdo, A. B., Ikan, R. and Chet, I. 1990. Immobilized endo-${\beta}$-glucosidase enriches flavor of wine and passion fruit juice. J Agric Food Chem 27, 1973-1976.
20 Spencer, J. F. T. and Spencer, D. M. 1983. Genetic improvement of industrial yeast. Ann Rev Microbiol 37, 121-142.   DOI   ScienceOn
21 Zheng, D. Q., Wu, X. C., Tao, X. L., Wang, P. M., Li, P., Chi, X. Q., Li, Y. D., Yan, Q. F. and Zhao, Y. H. 2011. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102, 3020-3027.   DOI   ScienceOn
22 van Rensburg, P., van Zyl, W. H. and Pretorius, I. S. 1997. Over-expression of the Saccharomyces cerevisiae exo-${\beta}$-1,3-glucanase gene together with the Bacillus subtilis endo-${\beta}$- 1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-${\beta}$-1,4-glucanase gene in yeast. J Biotechnol 55, 43-53.   DOI   ScienceOn
23 Wei, P., Li, Z., He, P., Lin, Y. and Jiang, N. 2008. Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance. Biotech Appl Biochem 49, 113-128.   DOI   ScienceOn
24 Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. and del Cardayre, S. B. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644-646.   DOI   ScienceOn