References
- Muller FL, Liu Y, Van Remmen H. 2004. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279: 49064-49073. https://doi.org/10.1074/jbc.M407715200
- Fedoseeva IV, Pyatrikas DV, Stepanov AV, Fedyaeva AV, Varakina NN, Rusaleva TM, et al. 2017. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heatshock conditions. Sci. Rep. 7: 2586. https://doi.org/10.1038/s41598-017-02736-7
- Miller A. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS. Lett. 586: 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
- Kwon YY, Choi KM, Cho CY, Lee CK. 2015. Mitochondrial efficiency-dependent viability of Saccharomyces cerevisiae mutants carrying individual electron transport chain component deletions. Mol. Cells 38: 1054-1063. https://doi.org/10.14348/molcells.2015.0153
- Zyrina AN, Smirnova EA, Markova OV, Severin FF, Knorre DA. 2017. Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 83 Pii: e02759-16.
- Magri A, Di Rosa MC, Tomasello MF, Guarino F, Reina S, Messina A, et al. 2016. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochim. Biophys. Acta 1857: 789-798. https://doi.org/10.1016/j.bbabio.2016.03.003
- Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD. 2017. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 13: 1037-1052 https://doi.org/10.1080/15548627.2017.1303021
- Rattanawong K, Kerdsomboon K, Auesukaree C. 2015. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlorin Saccharomy cescerevisiae. Free. Radical. Biol. Med. 89: 963-971. https://doi.org/10.1016/j.freeradbiomed.2015.10.421
- Fukuda T, Kanki T. 2018. Mechanisms and physiological roles of mitophagy in yeast. Mol. Cells 41: 35-44. https://doi.org/10.14348/MOLCELLS.2018.2214
- Kanki T, Furukawa K, Yamashita S. 2015. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853: 2756-2765. https://doi.org/10.1016/j.bbamcr.2015.01.005
- Fan P, Xie X, Chen CH, Peng X, Zhang P, Yang C, et al. 2019. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol. 38: 10-22. https://doi.org/10.1089/dna.2018.4348
- Muller M, Lu K, Reichert AS. 2015. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1853: 2766-2774. https://doi.org/10.1016/j.bbamcr.2015.02.024
- Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, et al. 2012. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 287:3265-3272. https://doi.org/10.1074/jbc.M111.280156
- Tsukada M, Ohsumi Y. 1993. Isolation and characterization of autophagydefective mutants of Saccharomyces cerevisiae. FEBS. Lett. 333: 169-174. https://doi.org/10.1016/0014-5793(93)80398-E
- Yoo SM, Jung YK. 2018. A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 41: 18-26. https://doi.org/10.14348/MOLCELLS.2018.2277
- Xia X, Katzenell S, Reinhart EF, Bauer KM, Pellegrini M, Ragusa MJ. 2018. A pseudo-receiver domain in Atg32 is required for mitophagy. Autohhagy 14: 1620-1628.
- Aihara M, Jin X, Kurihara Y, Yoshida Y, Matsushima Y, Oku M, et al. 2014. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell Sci. 127: 3184-3196. https://doi.org/10.1242/jcs.153254
- Furukawa K, Fukuda T, Yamashita S, Saigusa T, Kurihara Y, Yoshida Y, et al. 2018. The PP2A-like protein phosphatase Ppg1 and the Far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Rep. 23: 3579-3590. https://doi.org/10.1016/j.celrep.2018.05.064
- Shan YT, Gu ZW, Kong Z, Zhou Y, Li B., Yan MF, et al. 2019. Progress on function of ATG11. Prog. Biochem. Biophys. 46: 796-803.
- Zientara-Rytter K, Ozeki K, Nazarko TY, Subramani S. 2018. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy 14 : 368-384. https://doi.org/10.1080/15548627.2017.1413521
- Chen S, Cui Y, Parashar S, Novick PJ, Ferro-Novick S. 2018. ER-phagy requires Lnp1, a protein that stabilizes rearrangements of the ER network. Proc. Natl. Acad. Sci. USA 115: E6237-E6244. https://doi.org/10.1073/pnas.1805032115
- Eapena VV, Waterman DP, Bernard A, Schiffmann N, Sayasd E, Kamber R, et al. 2017. A pathway of targeted autophagy is induced by DNA damage in budding yeas. Proc. Natl. Acad. Sci. USA 116: E1158-E1167.
- Waliullah TM, Yeasmin AMST, Kaneko A. 2017. Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast. Biosci. Biotech. Biochem. 81: 307-310. https://doi.org/10.1080/09168451.2016.1234928
- Takagi H, Taguchi J, Kaino T. 2016. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 33: 355-363. https://doi.org/10.1002/yea.3154
- Noctor G, Foyer, CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
- Tesniere C, Brice C, Blondin B. 2015. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl. Microbiol. Biotechnol. 99: 7025-7034. https://doi.org/10.1007/s00253-015-6810-z
- Timon-Gomez A, Sanfeliu-Redondo D, Pascual-Ahuir A, Proft M. 2018. Regulation of the stress-activated degradation of mitochondrial respiratory complexes in yeast. Front. Microbiol. 9: 106. https://doi.org/10.3389/fmicb.2018.00106
- Shiroma S, Jayakody LN, Horie K, Okamoto K, Kitagakia H. 2014. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl. Environ. Microbiol. 80: 1002-1012. https://doi.org/10.1128/AEM.03130-13
- Jing HJ, Liu HH, Zhang L, Gao J, Song HR, Tan XR. 2018. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 1982-1991. https://doi.org/10.4014/jmb.1806.06014
- Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F, Costa V, Mendes-Faia, A, et al. 2010. Accumulation of nonsuperoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 7918-7824. https://doi.org/10.1128/AEM.01535-10
- Almeida B, Sampaio-Marques B, Carvalho J, Silva MT, Leao C, et al. 2007. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 7: 404-412. https://doi.org/10.1111/j.1567-1364.2006.00188.x
- Kainz K, Tadic J, Zimmermann A, Pendl T, Carmona-Gutierrez D, Ruckenstuhl C, Eisenberg T, et al. 2017. Methods to assess autophagy and chronological aging in yeast. Methods Enzymol. 588: 367-394. https://doi.org/10.1016/bs.mie.2016.09.086
- Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M. 2002. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol. Biol. Cell. 13: 2598-2606. https://doi.org/10.1091/mbc.E01-12-0161
- Ludovico P, Sansonetty F, Corte-Real M. 2001. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147: 3335-3343. https://doi.org/10.1099/00221287-147-12-3335
- Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
- Wagner-Vogel G, Lammer F, Kamper J, Basse CW. 2015. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy. BMC Microbiol. 15: 23. https://doi.org/10.1186/s12866-015-0358-z
- Ma M, Liu ZL. 2010. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87: 829-845. https://doi.org/10.1007/s00253-010-2594-3
- Charoenbhakdi S, Dokpiku T, Burphan T, Techo T, Auesukaree C. 2016. Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl. Environ. Microbiol. 82: 3121-3130. https://doi.org/10.1128/AEM.00376-16
- Dog?an A, Demi?rci? S, Ayteki?n AO, S?ahi?n F. 2014. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl. Biochem. Biotechnol. 174: 28-42. https://doi.org/10.1007/s12010-014-1006-z
- Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642. https://doi.org/10.1007/s00253-005-0229-x
- Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. 2018. Mitochondrial membrane potential. Analytic. Biochem. 552: 50-59. https://doi.org/10.1016/j.ab.2017.07.009
- An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, et al. 2014. Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy 10: 1702-1711. https://doi.org/10.4161/auto.32122
- Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W, et al. 2016. Elucidation of ethanol tolerance mechanisms in saccharomyces cerevisiae by global metabolite profiling. Biotechnol. J. 11: 1221-1229. https://doi.org/10.1002/biot.201500613
- Deffieu M, Bhatia-Kissova I, Salin B, Galinier A, Manon S, Camougrand N. 2009. Glutathione participates in the regulation of mitophagy in yeast. J. Biol. Chem 284: 14828-14837. https://doi.org/10.1074/jbc.M109.005181
- Okamoto K, Kondo-Okamoto N, Ohsumi Y. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17: 87-97. https://doi.org/10.1016/j.devcel.2009.06.013
- Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309-314. https://doi.org/10.1038/nature14893
- Bin-Umera MA, McLaughlina JE, Butterlya MS, McCormickb S, Tumer NE. 2014. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc. Natl. Acad. Sci. USA 111: 11798-11803. https://doi.org/10.1073/pnas.1403145111
- Yao Z, Klionsky DJ. 2016. An unconventional pathway for mitochondrial protein egradation. Autophagy 12: 1971-1972. https://doi.org/10.1080/15548627.2016.1235127
Cited by
- Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress vol.10, pp.11, 2020, https://doi.org/10.3390/antiox10111735
- Mitophagy in Yeast: Decades of Research vol.10, pp.12, 2020, https://doi.org/10.3390/cells10123541
- Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making vol.154, 2020, https://doi.org/10.1016/j.lwt.2021.112653