DOI QR코드

DOI QR Code

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan (College of Biological Engineering, Henan University of Technology) ;
  • Liu, Huanhuan (College of Biological Engineering, Henan University of Technology) ;
  • Lu, Zhang (College of Biological Engineering, Henan University of Technology) ;
  • Cui, liuqing (College of Biological Engineering, Henan University of Technology) ;
  • Tan, Xiaorong (College of Biological Engineering, Henan University of Technology)
  • Received : 2020.06.19
  • Accepted : 2020.09.22
  • Published : 2020.12.28

Abstract

Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

Keywords

References

  1. Muller FL, Liu Y, Van Remmen H. 2004. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279: 49064-49073. https://doi.org/10.1074/jbc.M407715200
  2. Fedoseeva IV, Pyatrikas DV, Stepanov AV, Fedyaeva AV, Varakina NN, Rusaleva TM, et al. 2017. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heatshock conditions. Sci. Rep. 7: 2586. https://doi.org/10.1038/s41598-017-02736-7
  3. Miller A. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS. Lett. 586: 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  4. Kwon YY, Choi KM, Cho CY, Lee CK. 2015. Mitochondrial efficiency-dependent viability of Saccharomyces cerevisiae mutants carrying individual electron transport chain component deletions. Mol. Cells 38: 1054-1063. https://doi.org/10.14348/molcells.2015.0153
  5. Zyrina AN, Smirnova EA, Markova OV, Severin FF, Knorre DA. 2017. Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 83 Pii: e02759-16.
  6. Magri A, Di Rosa MC, Tomasello MF, Guarino F, Reina S, Messina A, et al. 2016. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. Biochim. Biophys. Acta 1857: 789-798. https://doi.org/10.1016/j.bbabio.2016.03.003
  7. Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD. 2017. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 13: 1037-1052 https://doi.org/10.1080/15548627.2017.1303021
  8. Rattanawong K, Kerdsomboon K, Auesukaree C. 2015. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlorin Saccharomy cescerevisiae. Free. Radical. Biol. Med. 89: 963-971. https://doi.org/10.1016/j.freeradbiomed.2015.10.421
  9. Fukuda T, Kanki T. 2018. Mechanisms and physiological roles of mitophagy in yeast. Mol. Cells 41: 35-44. https://doi.org/10.14348/MOLCELLS.2018.2214
  10. Kanki T, Furukawa K, Yamashita S. 2015. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853: 2756-2765. https://doi.org/10.1016/j.bbamcr.2015.01.005
  11. Fan P, Xie X, Chen CH, Peng X, Zhang P, Yang C, et al. 2019. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol. 38: 10-22. https://doi.org/10.1089/dna.2018.4348
  12. Muller M, Lu K, Reichert AS. 2015. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1853: 2766-2774. https://doi.org/10.1016/j.bbamcr.2015.02.024
  13. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, et al. 2012. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 287:3265-3272. https://doi.org/10.1074/jbc.M111.280156
  14. Tsukada M, Ohsumi Y. 1993. Isolation and characterization of autophagydefective mutants of Saccharomyces cerevisiae. FEBS. Lett. 333: 169-174. https://doi.org/10.1016/0014-5793(93)80398-E
  15. Yoo SM, Jung YK. 2018. A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 41: 18-26. https://doi.org/10.14348/MOLCELLS.2018.2277
  16. Xia X, Katzenell S, Reinhart EF, Bauer KM, Pellegrini M, Ragusa MJ. 2018. A pseudo-receiver domain in Atg32 is required for mitophagy. Autohhagy 14: 1620-1628.
  17. Aihara M, Jin X, Kurihara Y, Yoshida Y, Matsushima Y, Oku M, et al. 2014. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell Sci. 127: 3184-3196. https://doi.org/10.1242/jcs.153254
  18. Furukawa K, Fukuda T, Yamashita S, Saigusa T, Kurihara Y, Yoshida Y, et al. 2018. The PP2A-like protein phosphatase Ppg1 and the Far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Rep. 23: 3579-3590. https://doi.org/10.1016/j.celrep.2018.05.064
  19. Shan YT, Gu ZW, Kong Z, Zhou Y, Li B., Yan MF, et al. 2019. Progress on function of ATG11. Prog. Biochem. Biophys. 46: 796-803.
  20. Zientara-Rytter K, Ozeki K, Nazarko TY, Subramani S. 2018. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy 14 : 368-384. https://doi.org/10.1080/15548627.2017.1413521
  21. Chen S, Cui Y, Parashar S, Novick PJ, Ferro-Novick S. 2018. ER-phagy requires Lnp1, a protein that stabilizes rearrangements of the ER network. Proc. Natl. Acad. Sci. USA 115: E6237-E6244. https://doi.org/10.1073/pnas.1805032115
  22. Eapena VV, Waterman DP, Bernard A, Schiffmann N, Sayasd E, Kamber R, et al. 2017. A pathway of targeted autophagy is induced by DNA damage in budding yeas. Proc. Natl. Acad. Sci. USA 116: E1158-E1167.
  23. Waliullah TM, Yeasmin AMST, Kaneko A. 2017. Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast. Biosci. Biotech. Biochem. 81: 307-310. https://doi.org/10.1080/09168451.2016.1234928
  24. Takagi H, Taguchi J, Kaino T. 2016. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 33: 355-363. https://doi.org/10.1002/yea.3154
  25. Noctor G, Foyer, CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  26. Tesniere C, Brice C, Blondin B. 2015. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl. Microbiol. Biotechnol. 99: 7025-7034. https://doi.org/10.1007/s00253-015-6810-z
  27. Timon-Gomez A, Sanfeliu-Redondo D, Pascual-Ahuir A, Proft M. 2018. Regulation of the stress-activated degradation of mitochondrial respiratory complexes in yeast. Front. Microbiol. 9: 106. https://doi.org/10.3389/fmicb.2018.00106
  28. Shiroma S, Jayakody LN, Horie K, Okamoto K, Kitagakia H. 2014. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl. Environ. Microbiol. 80: 1002-1012. https://doi.org/10.1128/AEM.03130-13
  29. Jing HJ, Liu HH, Zhang L, Gao J, Song HR, Tan XR. 2018. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 1982-1991. https://doi.org/10.4014/jmb.1806.06014
  30. Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F, Costa V, Mendes-Faia, A, et al. 2010. Accumulation of nonsuperoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 7918-7824. https://doi.org/10.1128/AEM.01535-10
  31. Almeida B, Sampaio-Marques B, Carvalho J, Silva MT, Leao C, et al. 2007. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 7: 404-412. https://doi.org/10.1111/j.1567-1364.2006.00188.x
  32. Kainz K, Tadic J, Zimmermann A, Pendl T, Carmona-Gutierrez D, Ruckenstuhl C, Eisenberg T, et al. 2017. Methods to assess autophagy and chronological aging in yeast. Methods Enzymol. 588: 367-394. https://doi.org/10.1016/bs.mie.2016.09.086
  33. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M. 2002. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol. Biol. Cell. 13: 2598-2606. https://doi.org/10.1091/mbc.E01-12-0161
  34. Ludovico P, Sansonetty F, Corte-Real M. 2001. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147: 3335-3343. https://doi.org/10.1099/00221287-147-12-3335
  35. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  36. Wagner-Vogel G, Lammer F, Kamper J, Basse CW. 2015. Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy. BMC Microbiol. 15: 23. https://doi.org/10.1186/s12866-015-0358-z
  37. Ma M, Liu ZL. 2010. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87: 829-845. https://doi.org/10.1007/s00253-010-2594-3
  38. Charoenbhakdi S, Dokpiku T, Burphan T, Techo T, Auesukaree C. 2016. Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl. Environ. Microbiol. 82: 3121-3130. https://doi.org/10.1128/AEM.00376-16
  39. Dog?an A, Demi?rci? S, Ayteki?n AO, S?ahi?n F. 2014. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl. Biochem. Biotechnol. 174: 28-42. https://doi.org/10.1007/s12010-014-1006-z
  40. Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642. https://doi.org/10.1007/s00253-005-0229-x
  41. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. 2018. Mitochondrial membrane potential. Analytic. Biochem. 552: 50-59. https://doi.org/10.1016/j.ab.2017.07.009
  42. An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, et al. 2014. Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy 10: 1702-1711. https://doi.org/10.4161/auto.32122
  43. Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W, et al. 2016. Elucidation of ethanol tolerance mechanisms in saccharomyces cerevisiae by global metabolite profiling. Biotechnol. J. 11: 1221-1229. https://doi.org/10.1002/biot.201500613
  44. Deffieu M, Bhatia-Kissova I, Salin B, Galinier A, Manon S, Camougrand N. 2009. Glutathione participates in the regulation of mitophagy in yeast. J. Biol. Chem 284: 14828-14837. https://doi.org/10.1074/jbc.M109.005181
  45. Okamoto K, Kondo-Okamoto N, Ohsumi Y. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17: 87-97. https://doi.org/10.1016/j.devcel.2009.06.013
  46. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309-314. https://doi.org/10.1038/nature14893
  47. Bin-Umera MA, McLaughlina JE, Butterlya MS, McCormickb S, Tumer NE. 2014. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc. Natl. Acad. Sci. USA 111: 11798-11803. https://doi.org/10.1073/pnas.1403145111
  48. Yao Z, Klionsky DJ. 2016. An unconventional pathway for mitochondrial protein egradation. Autophagy 12: 1971-1972. https://doi.org/10.1080/15548627.2016.1235127

Cited by

  1. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress vol.10, pp.11, 2020, https://doi.org/10.3390/antiox10111735
  2. Mitophagy in Yeast: Decades of Research vol.10, pp.12, 2020, https://doi.org/10.3390/cells10123541
  3. Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making vol.154, 2020, https://doi.org/10.1016/j.lwt.2021.112653