• Title/Summary/Keyword: ethanol stress

Search Result 407, Processing Time 0.029 seconds

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei;Huang, Xiaowei;Zhao, Na;Gao, Feng;Lu, Qian;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1630-1636
    • /
    • 2010
  • During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Protective Effects of Thiazolo[3,2-b]-1,2,4-Triazoles on Ethanol­Induced Oxidative Stress in Mouse Brain and Liver

  • Aktay Goknur;Tozkoparan Birsen;Ertan Mevlut
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.438-442
    • /
    • 2005
  • A series of 3-[1-(4-(2-methylpropyl) phenyl) ethyl]-1,2,4-triazole-5-thione (I) and its bicyclic condensed derivatives 6-benzylidenethiazolo[3,2-b]-1, 2,4-triazole-5(6H)-ones (IIa-IIf) were investigated for the prevention of ethanol-induced oxidative stress in liver and brain of mice. Administration of ethanol (0.1 mL/mice, p.o.) resulted in a drop of total thiol groups (T-SH) and non-protein thiol groups (NP-SH), and an increase in thiobarbituric acid reactive substances (TBARS) in both liver and brain tissue of mice (p<0.001). Among the compounds investigated (at a dose of 200 mg/kg, p.o.), I and IId ameliorated the peroxidative injury in these tissues effectively. Compounds IIa, IIc and IIe improved the peroxidative tissue injury only in brain. These findings suggest that certain condensed thiazolo-triazole compounds may contribute to the control of ethanol-induced oxidative stress in an organ selective manner.

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo;Kang, Hyung-Sik;Yun, Chul-Ho;Kwak, Hahn-Shik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.492-498
    • /
    • 2012
  • Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

Effect of ethanol extracts from red pepper seeds on antioxidative defense system and oxidative stress in rats fed high-fat.high-cholesterol diet

  • Song, Won-Young;Ku, Kyung-Hyung;Choi, Jeong-Hwa
    • Nutrition Research and Practice
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • The purpose of the present study was to investigate the effect of ethanol extracts from red pepper seeds on the antioxidative defense system and oxidative stress in rats fed a high fat high cholesterol diet. Rats were divided into four experimental groups which were composed of high fat high cholesterol diet group (HF), high fat high cholesterol diet with 0.1% ethanol extracts from red pepper seeds supplemented group (HEA), high fat high cholesterol diet with 0.2% ethanol extracts from red pepper seeds supplemented group (HEB) and high fat high cholesterol diet with 0.5% ethanol extracts from red pepper seeds supplemented group (HEC). Supplementation of ethanol extracts from red pepper seeds groups (HEA, HEB and HEC) resulted in significantly increased activities of hepatic glutathione peroxidase and catalase. Hepatic superoxide radical contents in microsome and mitochondria were significantly reduced in the groups supplemented with red pepper seeds ethanol extracts. Hepatic hydrogen peroxide content in the mitochondria was reduced in ethanol extracts from red pepper seeds supplemented groups. TBARS values in the liver were reduced in red pepper seeds ethanol extracts supplemented groups. Especially, HEB and HEC groups were significantly decreased compared to the HF group. Hepatic carbonyl values were significantly reduced in mitochondria in these supplemented groups. These results suggest that red pepper seeds ethanol extracts may reduce oxidative damage, by activation of antioxidative defense system in rats fed high fat high cholesterol diets.

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

Effect of Chronical Ethanol Ingestion on the Levels of Fatty Acid Ethyl Esters (FAEEs) and Lipid Peroxidation in Rat Tissues (만성적으로 알코올을 섭취한 쥐의 조직 내 Fatty Acid Ethyl Esters (FAEEs)와 지질과산화물 형성에 미치는 영향)

  • Kim, Min-Seok;Kim, Se-Na;Park, Hyun-Suh
    • Journal of Nutrition and Health
    • /
    • v.40 no.5
    • /
    • pp.413-418
    • /
    • 2007
  • The present study was designed to observe the effect of chronically ingested ethanol on the level of fatty acid ethyl esters (FAEEs), which is a non-oxidative metabolite of ethanol metabolism in tissues, and its correlation to the status of oxidative stress in rats. Forty male Sprague Dawley rats weighing 145 - 155 g were divided into 2 groups, Control and EtOH. All rats were fed Lieber-DeCarli liquid diet for 4 weeks by pair-feeding. An isocaloric maltose dextrin was added in replace of 50 g ethanol (36%kcal) in the control diet. Chronically ingested ethanol significantly increased the content of FAEEs in pancreas and liver, but not in brain. The level of 2-thiobarbituric acid reactive substances (TBARS) was significantly increased, but ${\alpha}-tocopherol$ level was significantly decreased in pancreas and liver. However, the levels of TBARS and ${\alpha}-tocopherol$ in brain were not significantly affected by ethanol ingestion. Therefore, chronically ingested ethanol might cause tissue damage by increasing the levels of FAEEs and TBARS and dissipating more ${\alpha}-tocopherol$ in tissues.

Stress Responses of the Escherichia coli groE Promoter

  • Kwak, Young-Hak;Kim, Sung-Jo;Lee, Ki-Young;Kim, Han-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2000
  • GroEL is well known as a molecular chaperone. In order to determine the dynamic stress response of the Escherichia coli groE promoter, a groE-lacZ operon fusion in the chromosome was constructed. Stress leading to ${\sigma}^{32}$ synthesis induces transcription from E. coli groE promoter, since the promoter is ${\sigma}^{32}-regulated$. When the strain was stressed with ethanol, phenol, and sodium chloride, clear inductions of ${\beta}-galactosidase$ were observed. Two types of simultaneous stresses of sodium chloride and phenol induced the enze much more than either of the two alone, suggesting that stress was an additive. The combined stress resulted in the highest induction of the enzyme in this system. The groE-lacZ fusion strain developed in this study can conveniently be used to detect other harmful pollutants in the environment. Stress treatment of cells containing recombinant proteins, which need GroEl, by ethanol, phenol, or sodium chloride, might have a tendency to increase their biological activities.

  • PDF

Alteration of the Aldehyde Dehydrogenase Activity by the Chronic Ethanol Administration (만성 알콜 섭취로 인한 간내 알데히드 탈수소 효소 활성의 변동)

  • Mun, Jeon-Ok;Yang, Jeong-Hwa
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.563-573
    • /
    • 1996
  • The system most likely responsible for the accelerated metabolism of alcohol with chronic ingestion or at high blood ethanol levels, is the microsomal ethanol-oxidizing system(M EOS). While the increase in the MEOS with chronic ethanol ingestion is thought to be adaptive, it may also have serious adverse effects on the liver. The rates of the NADPH-dependent oxygen consumption by the liver microsomes from the prolonged ethanol fed rats were 2 times higher than the rates from the non-treated rats. With the alcohol ingestion, the total SH and nonprotein SH contents showed the significant decrease and at the same time, MDA in liver and GOT and GPT levels in blood showed the significant increase, which suggests the occurrence of liver damage due to the oxidative stress caused by chronic alcohol consumption. The mitochondrial aldehyde dehydrogenase(ALDH) activity was decreased by chronic ethanol ingestion, whereas the alcohol dehydrogenase activity and the cytosolic ALDH activity were not altered. These results suggest that the induction of cytochrome P450 by the chronic alcohol ingestion increases the oxidative stress which seems to result in the altered the physiological states of the liver including the ALDH activity, which may in turn to lead to the liver disease.

  • PDF

Pulse Exposure to Ethanol Augments Vascular Contractility Through Stress Response

  • Yang, Eun-Kyoung;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • Drinking excessive alcohol has been recognized as a risk factor for hypertension. However, the mechanism by which alcohol intake causes hypertension still remains elusive. We tested the hypothesis that ethanol itself acts as a stress factor on vasculature and indirectly modulates vascular contractility. After end of exposure to 1, 2.5 and 5% ethanol for 45 min, rat aortic strips were subjected to contractile responses, immunoblot for Hsp70 and the measurement of levels of myosin light chain phosphorylation. Exposure to 5% ethanol not only augmented contractions to KCl or phenylephrine, but also increased expression of Hsp70 and the levels of myosin light chain phosphorylation. There were no significant differences in contractions produced by $1\;{\mu}mol/L$ phorbol 12,13-dibutyrate, a protein kinase C activator, whether the tissues were exposed to 5% ethanol or not. This is the first report to show that even short exposure to ethanol has a delayed effect to increase vascular smooth muscle contractility through a modulation of thick filament regulation. It may be a mechanism by which ingestion of alcohol induces hypertension.

  • PDF

Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae (알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응)

  • Park, Ju-Yong;Hong, Chun-Sang;Han, Ji-Hye;Kang, Hyun-Woo;Chung, Bong-Woo;Choi, Gi-Wook;Min, Ji-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.105-108
    • /
    • 2011
  • The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.