Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.5.492

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells  

Lee, Ki-Mo (Department of Biomedicinal Science & Biotechnology, Pai-Chai University)
Kang, Hyung-Sik (School of Biological Sciences and Technology, Chonnam National University)
Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University)
Kwak, Hahn-Shik (Department of Biomedicinal Science & Biotechnology, Pai-Chai University)
Publication Information
Biomolecules & Therapeutics / v.20, no.5, 2012 , pp. 492-498 More about this Journal
Abstract
Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.
Keywords
Phytochemical; Antioxidant; ROS; Oxidative stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126.   DOI   ScienceOn
2 Aydin, H. H., Celik, H. A., Deveci, R., Karacali, S., Saydam, G., Bedii Omay, S. and Batur, Y. (2005) Induction of apoptosis by fatty acid ethyl esters in HepG2 cells. Food Chem. Toxicol. 43, 139-145.   DOI
3 Best, C. A., Sarkola, T., Eriksson, C. J., Cluette-Brown, J. E. and Laposata, M. (2006) Increased plasma fatty acid ethyl ester levels following inhibition of oxidative metabolism of ethanol by 4-methylpyrazole treatment in human subjects. Alcohol Clin. Exp. Res. 30, 1126-1131.   DOI
4 Calabrese, V., Renis, M., Calderone, A., Russo, A., Barcellona, M. L. and Rizza, V. (1996) Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic. Biol. Med. 20, 391-397.
5 Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121.   DOI   ScienceOn
6 Granado-Serrano, A. B., Martin, M. A., Bravo, L., Goya, L. and Ramos, S. (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J. Nutr. 136, 2715-2721.   DOI
7 Kahraman, A., Cakar, H. and Koken, T. (2012) The protective effect of quercetin on long-term alcohol consumption-induced oxidative stress. Mol. Biol. Rep. 39, 2789-2794.   DOI
8 Kang, H. S., Kim, Y. H., Lee, C. S., Lee, J. J., Choi, I. and Pyun, K. H. (1996) Suppression of interleukin-1 and tumor necrosis factor-alpha production by acanthoic acid, (-)-pimara-9(11),15-dien-19-oic acid, and it antifibrotic effects in vivo. Cell Immunol. 170, 212-221.   DOI   ScienceOn
9 Kurose, I., Higuchi, H., Kato, S., Miura, S. and Ishii, H. (1996) Ethanol-induced oxidative stress in the liver. Alcohol Clin. Exp. Res. 20(1 Suppl), 77A-85A.   DOI
10 Laposata, M. (1998) Fatty acid ethyl esters: ethanol metabolites which mediate ethanol-induced organ damage and serve as markers of ethanol intake. Prog. Lipid Res. 37, 307-316.   DOI
11 Lenz, A. G., Costabel, U., Shaltiel, S. and Levine, R. L. (1989) Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal. Biochem. 177, 419-425.   DOI   ScienceOn
12 Lieber, C. S. (1997) Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta 257, 59-84.   DOI   ScienceOn
13 Liu, S., Hou, W., Yao, P., Zhang, B., Sun, S., Nussler, A. K. and Liu, L. (2010) Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol. In Vitro 24, 516-522.   DOI
14 Lu, Y. and Cederbaum, A. I. (2008) CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44, 723-738.   DOI   ScienceOn
15 Mates, J. M., Segura, J. A., Alonso, F. J. and Marquez, J. (2011) Anticancer antioxidant regulatory functions of phytochemicals. Curr. Med. Chem. 18, 2315-2338.   DOI
16 Molina, M. F., Sanchez-Reus, I., Iglesias, I. and Benedi, J. (2003) Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol. Pharm. Bull. 26, 1398-1402.   DOI   ScienceOn
17 Oliva, J., Bardag-Gorce, F., Tillman, B. and French, S. W. (2011) Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro. Exp. Mol. Pathol. 90, 295-299.   DOI   ScienceOn
18 Navasumrit, P., Ward, T. H., Dodd, N. J. and O'Connor, P. J. (2000) Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure. Carcinogenesis 21, 93-99.   DOI   ScienceOn
19 Nordmann, R., Ribière, C. and Rouach, H. (1992) Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radical Biol. Med. 12, 219-240.   DOI   ScienceOn
20 Ogony, J., Matthews, R., Anni, H., Shannon, K. and Ercal, N. (2008) The mechanism of elevated toxicity in HepG2 cells due to combined exposure to ethanol and ionizing radiation. J. Appl. Toxicol. 28, 345-355.   DOI
21 Prasad, N. R., Jeyanthimala, K. and Ramachandran, S. (2009) Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J. Photochem. Photobiol. 95, 196-203.   DOI   ScienceOn
22 Rampart, M., Beetens, J. R., Bult, H., Herman, A. G., Parnham, M. J. and Winkelmann, J. (1986) Complement-dependent stimulation of prostacyclin biosynthesis: inhibition by rosmarinic acid. Biochem. Pharmacol. 35, 1397-1400.   DOI
23 Reddy, M. B., Hurrell, R. F., Juillerat, M. A. and Cook, J. D. (1996) The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am. J. Clin. Nutr. 63, 203-207.   DOI
24 Ross, J. A. and Kasum, C. M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19-34.   DOI   ScienceOn
25 Shamsuddin, A. M., Vucenik, I. and Cole, K. E. (1997) IP6: a novel anti-cancer agent. Life Sci. 61, 343-354.   DOI   ScienceOn
26 Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S. and Russo, G. L. (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 83, 6-15.   DOI   ScienceOn
27 Sarkola, T., Iles, M. R., Kohlenberg-Mueller, K. and Eriksson, C. J. (2002) Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole. Alcohol. Clin. Exp. Res. 26, 239-245.   DOI
28 Satoh, T., Enokido, Y., Aoshima, H., Uchiyama, Y. and Hatanaka, H. (1997) Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. J. Neurosci. Res. 50, 413-420.   DOI
29 Vucenik, I. and Shamsuddin, A. M. (2006) Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 55, 109-125.   DOI
30 Vucenik, I., Tomazic, V. J., Fabian, D. and Shamsuddin, A. M. (1992) Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and metastatic fibrosarcoma, a pilot study. Cancer Lett. 65, 9-13.   DOI
31 Wang, H. and Joseph, J. A. (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616.   DOI   ScienceOn
32 Wu, H., Cai, P., Clemens, D. L., Jerrells, T. R., Ansari, G. A. and Kaphalia, B. S. (2006) Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: role of nonoxidative metabolism. Toxicol. Appl. Pharmacol. 216, 238-247.   DOI