• Title/Summary/Keyword: ethanol addition

Search Result 1,490, Processing Time 0.035 seconds

Microbial Conversion of Cholesterol to 4-Androstene-3,17-dione by Intermittent Addition of Substrate (간헐적으로 첨가된 Cholesterol로부터 미생물전환에 의한 4-Androstene-3,17-dione의 생산)

  • Choi, S.K.;Kim, H.S.;Park, Y.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 1988
  • Production of 4-androstene-3,17-dione(AD) from cholesterol by microbial conversion was investigated. To facilitate the solubilization of cholesterol in the fermentation broth, ethanol was used as an organic solvent. Inhibition on cell growth by ethanol was observed to be negligible upto 2% (V/V) concentration. Microbial conversion was successfully carried out with high yield when the cholesterol was added at early logarithmic growth phase with pH control at 7.0. In order to improve the process productivity, bioconversion was conducted at various mode of cholesterol addition ; 0.1% (V/W) of cholesterol was found to be most appropriate for solubilization in ethanol and was added intermittently. When added three time(total 3 g/$\ell$), overall bioconversion yield reached upto 65% while single addition of same amount of cholesterol (3 g/$\ell$) yielded about 40% conversion.

  • PDF

Antioxidative Activity and Nitrite Scavenging Ability of Ethanol Extract from Phyllostachys bambusoides (대나무 에탄올추출물의 항산화 효과 및 아질산염 소거작용)

  • Lim, Jin-A;Na, Young-Soon;Baek, Seung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.306-310
    • /
    • 2004
  • Efficacy of antioxidative activity and nitrite scavenging ability of ethanol extract of Phyllostachys bambusoides S. et Z. (P. bambusoides) was investigated. Electron-donating ability of ethanol extract at $RC_{50}$ was $116.75\;{\mu}g/mL$. After addition of 0.92 mg/mL ethanol extract, autooxidation of pyrogallol decreased to 44% by superoxide dismutase-like activity. In antioxidative activity of ethanol extract against linoleic acid during incubation times of 4 and 6 day at $40^{\circ}C$, TBA values decreased by 74.76 and 58.48% with addition of 50 mg/mL, respectively. Nitrite scavenging ability showed the most remarkable effect at pH 1.2, decreasing to 43% by addition of 0.2 mg/mL. These results suggest that ethanol extract of P. bambusoides can be used in bioactive and functional material.

Effects of Soy Protein Hydrolysates Prepared by Varying Subcritical Media on the Physicochemical Properties of Pork Patties

  • Lee, Yun-Kyung;Ko, Bo-Bae;Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB.

Stability of the Pigments from Monascus purpuresu CBS 281.34 (Monascus purpureus CBS 281.34가 생성하는 홍국 색소의 안정성)

  • 임성일;곽은정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.711-715
    • /
    • 2004
  • The stability of 80% ethanol-soluble pigments from Monasus purpureus CBS 281.34 was investigated according to storage temperature, pH and addition of organic acid. Also, the stability of ethanol-soluble pigment in aqueous system was examined after the addition of distilled water in the range of 0∼80% during the storage at 1$0^{\circ}C$ and 2$0^{\circ}C$ for 4 weeks with water soluble pigment. The heat stability was the highest (9.74%) when the 80% ethanol-soluble pigments were stored at 1$0^{\circ}C$ for 4 weeks. However, the 80% ethanol-soluble pigments stored at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 24 h and 12 h greatly decreased by 23.06% and 30.36%, respectively. Although the 80% ethanol-soluble pigments were stable in the range of pH 4∼8, the degradation rate of pigment increased at pH 2 and PH 10.80% ethanol extract was adjusted to PH 4 by adding organic acids. The rate of pigment degradation was not different from control for 4 weeks. Red pigment was stable in the treatment of organic acids. And the stability of ethanol-soluble pigment in aqueous system was gradually decreased as the pigment content and storage time increased. Additionally, the stability of ethanol-soluble pigment was higher at 1$0^{\circ}C$ than at 2$0^{\circ}C$.

Effect of Carbon Tetrachloride Administration on the Serum and Liver Xanthine Oxidase Activity in Ethanol-Pretreated Rats (Ethanol을 전처리한 흰쥐의 간 및 혈청 Xanthine Oxidase 활성에 미치는 사염화탄소의 영향)

  • 윤종국;김병렬;이상일
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.69-77
    • /
    • 1993
  • In the present study, the comparison of liver damage in carbon tetrachloride (CCl$_4$)-treated rats with that those pretreated with ethanol and an effect of liver injury on the serum and liver xanthine oxidase (XOD) activity were evaluated. The increasing rate of liver weight per body wt., the levels of serum alanine aminotransferase, and the decreasing rate of hepatic glucose-6-phosphatase activity and the protein contents in the liver cell were higher in carbon tetrachloride-treated animals pretreated with ethanol than the carbon tetrachloride-treated group. Especially, the histopathological findings also showed more severe liver damage in the ethanol-pretreated rats than the rats treated with carbon tetrachloride only. In such a experimental condition the xanthine oxidase activity of serum and liver both of carbon tetrachloride-treated rats and those pretreated with ethanol were higher than that of each control group. And the increasing rate of xanthine oxidase enzyme activity to the control group was higher in carbon tetrachloride-treated group pretreated with ethanol than those treated with CCl$_4$. In addition, the heptic uricase activity and the serum levels of uric acid were more increased in carbon tetrachloride-treated group pretreated with ethanol than those in the CCl$_4$-treated rats. On the other hand, there were no statistical differences in hepatic catalase and glutathione S-transferase activities between the CCl$_4$-treated rats and those pretreated with ethanol. In conclusion, it is assumed that the more severe liver damage in ethanol pretreated rats would be due to oxygen free radical produced by the xanthine oxidase system.

  • PDF

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo;Kang, Hyung-Sik;Yun, Chul-Ho;Kwak, Hahn-Shik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.492-498
    • /
    • 2012
  • Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

A Study on Combustion Characteristics with Ethanol and Hydrogen Enriched Gas Addition in Gasoline Engine (가솔린 엔진에서 에탄올 및 수소농후가스 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2928-2933
    • /
    • 2008
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

  • PDF

Determination of Total Phenolic Compounds from the Fruit of Rubus coreanum and Antioxidative Activity (복분자 열매의 총 페놀성분의 정량 및 항산화 활성)

  • 이종원;도재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.943-947
    • /
    • 2000
  • The purpose of this study was to investigate the extraction method of phenolic compounds from Rubus coreanum and antioxidative activity. antioxidative activities of Rubus coreanum were tested with ability of donating hydrogen to DPPH, and HPLC, fluorometry which measure the amount of MDA after reacting linoleic acid with $H_2O$$_2$, and LDL with $H_2O$$_2$ and FeCl$_2$. The most suitable extraction conditions of the phenolic compounds from Rubus coreanum was 3 times with 60% ethanol, and the yield of extract containing 35% moisture was 15.28%. In extraction efficacy of phenolic compounds, 60% ethanol was superior to water as extraction solvent, and extraction efficacy with 60% ethanol did not differ from disolving by water after evaporation of 60% ethanol extract. 60% ethanol extract of Rubus coreanum had an ability of hydrogen donating to DPPH, MDA determination showed the antioxidative effect with inhibition ratio of 77.91% on linoleic acid oxidation by addition of Rubus coreanum extract with the concentration of 1.500 ppm. and about 65.74% of LDL oxidation was inhibited by addition of 1,000 ppm.

  • PDF

A Study on the High-efficient Bioethanol Production Using Barley (보리를 이용한 고효율 바이오에탄올 생산 연구)

  • JEON, HYUNGJIN;GO, KYOUNG-MO;KIM, SHIN;JEONG, JUN-SEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.697-703
    • /
    • 2017
  • This study investigated the high-efficient process for bioethanol from barley by various condition. First, higher concentrations of ethanol could be produced without loss of yield by using reducing water consumption. This is because it could prevent to increase viscosity despite reducing water consumption. Second, the ethanol yield could be improved by using reducing particle size of biomass (increase of enzyme reactive surface). Third, The addition of protease could have a considerable effect on yield of fermentation, which provides nutrients to the yeast. This results showed that bioethanol production would provide efficient ethanol production and lower production costs.

Recovery of Milk Mineral from Concentrated Skim Milk Ultrafiltration Permeate (농축 탈지유 한외여과액으로부터 우유미네럴의 회수)

  • Lim, Kwangsei;Oh, Sejong;Park, Dong June;Imm, Jee-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2015
  • Milk mineral, which is also called milk calcium, was recovered from concentrated skim milk ultrafiltration permeate (CUFP). Lactose, the major constituent of CUFP, was crystallized by the addition of ethanol; lactose precipitation was observed to increase as the ratio of CUFP to ethanol increased. The calcium content of CUFP remained constant at a CUFP to ethanol ratio of 1:2, while it significantly decreased at a CUFP to ethanol ratio of 1:4. When ethanol (95%, v/v) was reused to precipitate lactose out of CUFP, 85% of the initial lactose precipitated out, while 82% of calcium remained soluble in the CUFP after storage for 24 h.

  • PDF