• Title/Summary/Keyword: ethano1

Search Result 10, Processing Time 0.022 seconds

Effect of Nepal Pseudo Ginseng Components on Lipolytic Action of Toxohormone-L from Cancerous Ascites Fluid (Nepal Pseudo Ginseng 성분이 Toxohormone-L에 의한 체지방 분해작용에 미치는 영향)

  • 이함동;여전척도
    • The Korean Journal of Food And Nutrition
    • /
    • v.4 no.1
    • /
    • pp.75-80
    • /
    • 1991
  • This study was divised to observe an inhibitory toward a lipolytic action of toxohormone-L from large root and small root Nepal pseudo ginseng(NPG ; Nepal products) components by water extract and ethanol precipitate in vitro. Toxohormone-L Is known to be a lipolytic factor that was partially purified from the ascites fluid of sarcoma 180-hearing mice and of patients with hepatoma. The inhibitory effect that inhibited the lipolytic action of toxohormone-L by ethanol precipitate component of large root NPG(mean 46.8%) was higher (mean 1.8 times) than that of water extract component in final reaction concentration ,5001g1m1, on the other side inhibitory effect of water extract component in small root NPG(mean 43.9%) was higher(mean 1. 2 times) than that of ethano1 precipitate component, respectively. In a way inhibitory effect of ethanol precipitate component in large root NPG(47.6%), when final reaction concentration of sample were 1,000 U g/ml, was about 4095 lower than that of Korean red ginseng, respectively.

  • PDF

Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated from Rotten Apple

  • Park, Joong-Kon;Park, Youn-Hee;Jung, Jae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • A cellulose-producing strain isolated from rotten apples was identified as Gluconacetobacter hansenii based on its physiological properties and the 16S rDNA complete sequencing method, and specifically named Gluconacetobacter hansenii PJK. The amount of bacterial cellulose (BC) produced by G. hansenii PJK in a shaking incubator was 1.5 times higher than that produced in a static culture. The addition of ethanol to the medium during cultivation enhanced the productivity of bacterial cellulose, plus the supplementation of 1% ethanol into the culture medium made the produced BC aggregate into a big lump and thus protected the bacterial-cellulose-producing G. hansenii PJK cells in the shear stress field from being converted into non-cellulose-producing (Cel) mutants. Cells subcultured three times in a medium containing ethanol retained their ability to produce BC without any loss in the production yield.

Development of Biologically Active Compounds from Edible Plant Sources XIV. Cyclohexylethanoids from the Flower of Campsis grandiflora K. Schum.

  • Kim, Dong-Hyun;Oh, Young-Jun;Han, Kyung-Min;Chung, In-Sik;Kim, Dae-Keun;Kim, Sung-Hoon;Kwon, Byoung-Mog;Park, Mi-Hyun;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • Campsis grandiflora K. Schum. flower was extracted with 80% aqueous MeOH, and concentrated extract was successively partitioned with EtOAc, n-BuOH, and $H_2O$. From n-BuOH fraction, two cyclohexylethanoids were isolated through repeated silica gel and Sephadex LH-20 column chromatographies. Based on physico-chemical data obtained from NMR, MS, and IR, chemical structures of compounds were determined as 1,4-dihydroxy-3,4-(epoxyethano)-5-cyclohexene (1) and cornoside (2). These compounds were isolated for the first time from C. grandiflora K. Schum flower.

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

Ethanol Fermentation by Pichia Stipitis in a Mixture of Pentoses and Hexoses (오탄당과 육탄당의 혼합용액에서 Pichia stipitis에 의한 에탄올 발효)

  • 정봉환;유연우서진호
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.395-399
    • /
    • 1994
  • P. stipitis CBS5776 was cultivated to examine the characteristics of ethanol fermentation for hexoses (mannose, g1ucose, and galactose) and pentoses(xylose and arabinose). Glucose was the best carbon source among the sugars used in terms of ethanol yield. Glucose was used to produce ethanol with an yield coefficient 0.376g ethanol/g glucose, whereas mannose was converted to produce ethanol with an yield coefficient 0.326g ethanol/g mannose. P. stipitis CBS5776 was also grown in a mixture of sugars to study the pattern of carbon utilization. The yeast utilized glucose and mannose firsts and then galastose and xylose as carbon sources. Arabinose was partially used for biomass when it was present as a sole carbon source, but it was not metabolized at all in a mixture of carbon sources. P. stipitis produced $12.2g/\ell$ ethanol with a yield coefficient 0.332 g ethano1/g sugar in a mixture of sugars.

  • PDF

Ethanol Induced Leucocytic and Hepatic DNA Strand Breaks Are Prevented by Styela clava and Styela plicata Supplementation in Male SD Rats (알코올로 인한 흰쥐의 백혈구 및 간 DNA 손상에 미치는 미더덕과 오만둥이 분말의 보충섭취 효과)

  • Kim, Jung-Mi;Park, Hae-Ryoung;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.10
    • /
    • pp.1271-1278
    • /
    • 2007
  • In this study, the ability of Styela clava or Styela plicata to reduce ethanol-induced hepatotoxicity and hepatic and leucocytic DNA damages was evaluated. Twenty four male SD rats were given 25% ethanol containing water (ad lib, p.o.) and divided into 3 groups; ethanol treated control group (EtOH), ethano1+3% S. clava (EtOH+SC), and ethano1+3% S. plicata (EtOH+SP). After 6 weeks, the supplementation of S. clava reduced the plasma ALT, ALP and LDH activities significantly (p<0.05), while S. plicata induced significant decrease in the plasma LDH activity only. The comet assay was employed to quantify the alcohol-induced DNA damage in rat hepatocytes and leucocytes. A significant protective effect on hepatic and leucocytic DNA damages was observed in S. clava or S. plicata supplemented groups compared to the EtOH control group. The hepatic DNA damage was correlated positively with plasma ALP and LDH activities. These results demonstrated that S. clava or S. plicata supplementation protected alcohol-induced hepatic and leucocytic DNA damage.

Ethanol Fermentation by K. fragilis from Jerusalem Artichoke (K. fragilis에 의한 돼지감자의 에탄올 발효에 관한 연구)

  • 허병기;유진선양지원
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.48-56
    • /
    • 1989
  • Fermentation characteristics of Jerusalem Artichoke of yeast K.fragilis CBS 1555 were investigated experimentally and quantitatively according to the change of initial sugar concentrations and initial PHs of fermentation broth. Initial sugar concentrations employed were 26, 45, 65, 105, 180, and 215g/1. And initial PHs of fermentation broth were 3, 5.5, 7 and 9. The maximum specific growth rate was observed as 0.4hr-1 at 65g/1 of initial sugar concentration. The maximum specific alcohol production rate was 1.68g/ghr at 105g/1 of initial sugar concentration Cell yield and ethanol yield represent the maximum values such as 0.14 and 0.49 respectively when the initial sugar concentration was 25g/1. The maximum of ethano1 fermentability, 97% was obtained at the initial concentrations, 26 and 45g/1. However, the maximum of total ethanol yield productivity was 2.78g/1hr when the initial concentration was 215g/1. And also the optimum PH was found 5.5 for both specific growth rate and specific alcohol production rate.

  • PDF

Studies on the Ethanol Production by Clostridium thermosaccharolyticum (Clostridium thermosaccharolyticum에 의한 에탄올생산에 관한 연구)

  • 조은경;이윤광;변유량;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.397-402
    • /
    • 1985
  • The fermentation of various sugars by C. thermosaccharolyticum was examined under pH controlled, anaerobic condition. The kinetic model for Product formation at various sugars was the combination of growth and non-growth associated mode. In the utilization of a single sugar, glucose was the best carbon source for growth. The specific growth rate of glucose, xylose and cellobiose were 0.363 h$^{-1}$, 0.242 h$^{-1}$ and 0.144 h$^{-1}$ respectively. The production of ethanol from glucose showed a negatively growth associated mode, so the higher growth rate decreased the productivity of ethanol. The maximum concentrations of the produced ethanol were 2.42 g/l, 3.76 g/l, and 3.4 g/l on glucose, xylose, and cellobiose. No glucose was detected during cellobiose fermentation. Sequential utilization of sugars was observed in the mixtures of glucose, xylose and cellobiose. It preferred glucose, followed by xylose and then cellobiose. The presence of other sugars had little or no effect on the rate of another sugar utilization. Cell lysis at the end of fermentation occured more slowly in the mixtures of sugars than a single sugar.

  • PDF

Separation of EPA and DHA from Fish Oil by Solubility Differences of Fatty Acid Salts in Ethanol (에탄올에 대한 지방산염의 용해도 차를 이용한 EPA와 DHA의 농축방법)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.430-434
    • /
    • 1987
  • Fatty acid fraction rich in ${\omega}-3$ polyunsaturated fatty acids (${\omega}-3$, PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could be obtained by saponification of fish oil in ethanol containing alkali hydroxide followed by cooling and filtration of the resultant solution. Fatty acid compositions of fish oil and the concentrates suggest that the ratio of number of double bonds to carbon number in a fatty acid molecule is a more important factor than the degree of unsaturation or the chain length in determining the solubility of fatty acid salts in ethanol. Water content in ethano1 affected significantly the efficiency of the separation with respect to yield and content of EPA and DHA in the concentrates; the lower the water content, the higher the efficiency. It was, however, influenced little by cooling procedure and temperature which the saponified solution experienced during the crystallization. Under an optimal condition, the contents of EPA and DHA in the concentrate increased by 2.4 and 2.5 times, respectively, as compared with those in sardine oil.

  • PDF