Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK Isolated from Rotten Apple

  • Park, Joong-Kon (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, Youn-Hee (Department of Chemical Engineering, Kyungpook National University) ;
  • Jung, Jae-Yong (Department of Chemical Engineering, Kyungpook National University)
  • Published : 2003.04.01

Abstract

A cellulose-producing strain isolated from rotten apples was identified as Gluconacetobacter hansenii based on its physiological properties and the 16S rDNA complete sequencing method, and specifically named Gluconacetobacter hansenii PJK. The amount of bacterial cellulose (BC) produced by G. hansenii PJK in a shaking incubator was 1.5 times higher than that produced in a static culture. The addition of ethanol to the medium during cultivation enhanced the productivity of bacterial cellulose, plus the supplementation of 1% ethanol into the culture medium made the produced BC aggregate into a big lump and thus protected the bacterial-cellulose-producing G. hansenii PJK cells in the shear stress field from being converted into non-cellulose-producing (Cel) mutants. Cells subcultured three times in a medium containing ethanol retained their ability to produce BC without any loss in the production yield.

Keywords

References

  1. Plant Cell v.7 Cellulose biosynthesis Delmer,D.P.;Y.Amor https://doi.org/10.1105/tpc.7.7.987
  2. J. Mat. Sci. v.24 The structure and mechanical properties of sheets prepared from bacterial cellulose Yamanaka,S.;K.Watanabe;N.Kitamura;M.Iguchi;S.Mitsuhashi;Y.Nishi;M.Uryu https://doi.org/10.1007/BF01139032
  3. Crit. Rev. Microbiol. v.17 Biogenesis of bacterial cellulose Cannon,R.E.;S.M.Anderson https://doi.org/10.3109/10408419109115207
  4. J. Chem. Soc. v.49 An acetic acid ferment which forms cellulose Brown,A.J. https://doi.org/10.1039/ct8864900432
  5. J. Ferment. Bioeng. v.81 Cellulose production by Acetobacter pasteurianus on silicone membrane Yoshino,T.;T.Asakura;K.Toda https://doi.org/10.1016/0922-338X(96)83116-3
  6. Prog. Polym. Sci. v.26 Bacterial synthesized cellulose-artificial blood vessels for microsurgery Klemm,D.;D.Schumann;U.Udhard;S.Marsch https://doi.org/10.1016/S0079-6700(01)00021-1
  7. Polym. Degrad. Stabil. v.59 Improved production of bacterial cellulose and its application potential Vandamme,E.J.;S.De Baets;A.Vanbaelen;K.Joris;P.De Wulf https://doi.org/10.1016/S0141-3910(97)00185-7
  8. Food Ind. Nutrition v.5 A view of utilizing cellulose produced by Acetobacter bacteria Jeong,Y.J.;I.S.Lee
  9. J. Gen. Microb. v.128 Cellulose-negative mutants of Acetobacter xylinum Valla,S.;J.Kjosbakken
  10. Biosci. Biotech. Biochem. v.59 Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture Toyosaki,H.;T.Naritomi;A.Seto;M.Matsuoka;T.Tsuchida;F.Yoshinaga https://doi.org/10.1271/bbb.59.1498
  11. Biochem. J. v.58 Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose Hestrin,B.;M.Schramm https://doi.org/10.1042/bj0580345
  12. Mammalian Protein Metabolism Evolution of protein molecules Juke,T.H.;C.R.Cantor;H.N.Munro(ed.)
  13. Mol. Biol. Evol. v.4 The neighbor-joining method: a new method for reconstruction phylogenetic trees Saito,N.;M.Nei
  14. Korean J. Biotechnol. Bioeng. v.15 Characteristics of cellulose production by Acetobacter sp. A9 in static culture Son,H.J.;O.M.Lee;Y.G.Kim;Y.K.Park;S.J.Lee
  15. Kor. J. Appl. Microbiol. Biotechnol. v.28 Isolation and identification of cellulose-producing bacteria Son,H.J.;O.M.Lee;Y.G.Kim;S.J.Lee
  16. J. Gen. Appl. Microbiol. v.22 Isolation and characterization of polarly flagellated intermediate strains in acetic acid bacteria Yamada,Y.;Y.Okada;K.Kondo https://doi.org/10.2323/jgam.22.237
  17. J. Biosci. Bioeng. v.93 A novel polysaccharide involved in the pellicle formation of Acetobacter aceti Moonmangmee,S.;K.Kawabata;S.Tanaka;H.Toyama;O.Adachi;K.Matsushita https://doi.org/10.1263/jbb.93.192
  18. Biosci. Biotechnol. Biochem. v.61 The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the genetic level Yamada,Y.;K.Hoshino;T.Ishikawa https://doi.org/10.1271/bbb.61.1244
  19. Biotechnol. Lett. v.17 Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media Borzani,W.;S.J.de Souza https://doi.org/10.1007/BF00128400
  20. Biosci. Biotech. Biochem. v.59 Effects of oxygen tension in the gaseous phase on production and physical properties of bacterial cellulose formed under static culture conditions Watanabe,K.;S.Yamanaka https://doi.org/10.1271/bbb.59.65
  21. Cellulose v.7 Structural modification of bacterial cellulose Yamanaka,S.;M.Ishihara;J.Sugiyama https://doi.org/10.1023/A:1009208022957
  22. J. Ferment. Bioeng. v.85 Effect of ethanol on bacterial cellulose production from fructose in continuous culture Naritomi,T.;T.Kouda;H.Yano;F.Yoshinaga https://doi.org/10.1016/S0922-338X(98)80012-3
  23. J. Gen. Microb. v.11 Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum Schramm,M.;S.Hestrin https://doi.org/10.1099/00221287-11-1-123
  24. Bioprocess Engineering: Basic Conception Shuler,M.L.;F.Kargi
  25. J. Biosci. Bioeng. v.91 Effect of capsule circulation velocity on production of L-Lysine by encapsulated Corynebacterium glutamicum in an airlift bioreactor Park,J.K.;G.S.Jeong https://doi.org/10.1263/jbb.91.81