• Title/Summary/Keyword: etching solution

Search Result 531, Processing Time 0.025 seconds

Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining (미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, an artificial neural network based on simulated annealing was constructed. The mapping relationship between the parameters of micro-scaled flow channels electrochemical machining and the channel shape was established by training the samples. The depth and width of micro-scaled flow channels electrochemical machining on stainless steel surface were predicted, and the flow channels experiment was carried out with pulse power supply in NaNO3 solution to verify the established network model. The results show that the depth and width of the channel predicted by the simulated annealing artificial neural network with "4-7-2" structure are very close to the experimental values, and the error is less than 5.3%. The predicted and experimental data show that the etching degree in the process of channels electrochemical machining is closely related to voltage and current density. When the voltage is less than 5V, a "small island" is formed in the channel; When the voltage is greater than 40V, the lateral etching of the channel is relatively large, and the "dam" between the channels disappears. When the voltage is 25V, the machining morphology of the channel is the best.

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution (글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층)

  • Kim, Ji Hwan;Cho, Young Hak;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

Microstructural Change of Implant Surface conditioned with Tetracycline-HCI;SLA and TB surface implant (표면처리 시간에 따른 임플란트 미세구조의 변화;SLA와 TB 표면 임플란트)

  • Woo, Jung-A;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.921-937
    • /
    • 2005
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline- HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml tetracycline - HCl solution for $\frac{1}{2}$ min., 1min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}min.$ respectively in the test group and with no treatment in the control group. The sponge was soaked in every 30 seconds. Then, the specimens were processed for scanning electron microscopic observation. Based upon the analysis of photographs by three dentists who are not related with this study, the results were obtained as follows; 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml tetracycline - HCl solution, in general, test specimens were similar to control. 3. In the $TiO_2blasted$ surfaces, the control specimen showed the rough surface With small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline - HCl solution was lessened and the flattened areas got wider after 1 minute.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.

Influence of Sodium Hypochorite & EDTA on the Microtensile Bond Strength of Ethanol Wet Bonding (Ethanol Wet Bonding에서 NaOCl과 EDTA가 결합강도에 미치는 영향)

  • Kim, Deok-Joong;Song, Yong-Beom;Park, Sang-Hee;Kim, Hyoung-Sun;Lee, Hye-Yoon;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • Sodium hypochlorite and ethylene diamine tetra acetic acid are substances usually used during endodontic treatment. Several studies found that the bonding was negated with certain irrigants and some of the used irrigants have demineralizing and chealating effects, so it was advocated to omit the etching step in etch and rinse adhesive systems. The purpose of this in vitro study was to evaluate the influence of NaOCl & EDTA on the bonding strength of ethanol wet bonding. Thirty human molars were selected and mesiodistally sectioned into halves, thus providing sixty specimens. The specimens were randomly assigned to 4 groups(n=15) according to the irrigant regimen used : (1) irrigated with distilled water for 10min (control); (2) irrigated with 5.25% NaOCl(10min), flushed with 5.25% NaOCl(1min) (3) irrigated with 5.25% NaOCl, flushed with 17% EDTA (4) irrigated with 5.25% NaOCl, flushed with 17% EDTA. Each group was acid-etched with 37% phosphoric acid(except group 4) and had their dentin surfaces dehydrated with ethanol solutions : 50%, 70%, 80%, 95%, 3x100%, 30s for each application. After dehydration, a primer( 50% all bond 3 resin + 50% ethanol) was used, followed by the adhesive(ALL-BOND 3 RESIN) application. Resin composite build-ups were then prepared using an incremental technique. Specimens were sectioned into beams and submitted to a tensile load using a Micro Tensile Tester(Bisco Inc.). The data were statistically analyzed using one-way ANOVA and Tukey HSD at p<0.5 level. There was no significant difference on G1(control) and G2(irrigated with NaOCl only ). (p>0.05). G3(flushed with EDTA) showed significantly high tensile bonding strength compared to the G2 (p<0.05). G4( treated with EDTA but no acid-etching) was significantly lower value than G3. (p<0.05) Although there was no significant difference, 5.25% NaOCl seemed to have an adverse effect on the bonding strength of ethanol wet bonding. The flushing with EDTA after NaOCl irrigation prevents the decrease of bonding strength. The use of 17% EDTA as a final flush can enhance the bonding strength but EDTA flushing can't substitute for a acid-etching.

IN VITRO STUDY ON THE EFFECTS OF THE FLOURIDE ON THE REMINERALIZATION OF ACID ETCHED ENAMEL (불소가 산부식된 법랑질의 재석회화에 미치는 영향에 관한 연구)

  • Kim, Jin-Han;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.389-399
    • /
    • 1996
  • Remineralization of acid-etched enamel across the time has been one of the curiosities in the context of the orthodontic biomechanics(Arends J. et al., IRL Press, 1, 1985), nevertheless, is so far controversial. It was the aim of this study to observe the remineralization patterns of acid-etched enamel across the time and whether the existence of fluoride might carry out any modifications. The intact buccal surfaces of the first bicuspids which was extracted for orthodontic treatment were ground smooth, and etched with a 38w/w% phosphoric acid for 60 seconds, The surface was observed by the scanning electron microscope and surface microhardness was measured after immersion in the fluoride or non-fluoride containing remineralizing solution for 0 hour, 12 hours, 1 day, 3 days, 7 days, 14 days, 28 days, and 42 days. The following results and conclusions were drawn; 1. Surface microhardness increased in both fluoride containing and non-fluoride containing solution group with time lapse. 2. In fluoride containing solution group, the surface microhardness sharply increased at the 12 hours group, on the other hand, surface microhardness increased at 3 days in non-fluoride containing solution group. 3. The difference in microhardness value between two groups manifested gradual decrease. 4. Scanning electron microphotographs disclosed that the fluoride containing solution group generated spiculate sub-stances in the 12 hours group, which was increased in number and size with time lapse. 7 days later, spherical composure was began to be produced, The spiculate substances so much increased in number that the etched enamel surface looked like flat in 42 days. 5. In non fluoride-containing solution group, there was no surface change at 42 days, perceivable in scanning electron microphotographs which could be defined as remineralization though the surface was a little rougher than the incipient etched surface. These results demonstrate that the action of the fluoride is exceedingly pertinent in the remineralization of acid-etched enamel and the remineralization process goes uninterruptedly with time lapse.

  • PDF

The study of the fabrication and physical properties of porous silicon multilayers (다층구조를 갖는 다공질규소층의 제작과 이의 물성)

  • 김영유;전종현;류성주;이영섭;이기원;최봉수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.597-600
    • /
    • 1999
  • By periodically varying the current density and etching time during anodic oxidation of crustalline silicon wafers in 15% HF-ethanol solution, we obtained porous silicon multilayers which have periodically varying refractive index. We fabricated the porous silicon microcavity (PSM) which consist of porous silicon multilayers (I), active layer of porous silicon, and porous silicon multilayers (II) and investigated its physical properties. The AFM (Atomic Force Microscope) measurement from the cross section of multilayers (I and II) shows uniformity of high refractive index and low index layers as well as the active layer. We observed the characteristics of Bragg reflector when the thickness of layers was 1/4 and the thickness of active layer was twice of the effective wavelength, which can be used as a filter for specific wavelength. We found the emission characteristic from the PSM, which FWHM (full width half maximum) was considerably decreased and emission intensity was increased.

  • PDF

Fabrication of a periodically poled MgO : $LiNbO_3$ ridge waveguide for a green laser generation (녹색 광 발진을 위한 주기적 분극 반전된 MgO : $LiNbO_3$ ridge waveguide 제작)

  • Yang, W.S.;Kwon, S.W.;Song, M.K.;Lee, H.M.;Kim, W.K.;Koo, K.H.;Yoon, D.H.;Lee, H.Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.151-155
    • /
    • 2007
  • Quasi-phase-matched (QPM) second harmonic generation (SHG) waveguide devices for a green light generation were fabricated by a periodically patterned electrode on the +Z crystal surface and homogeneous LiCl solution using a 5 mol% MgO doped congruent z-cut lithium niobate crystals. Using selective chemical etching, we confirmed the periodic (${\sim}6.8{\mu}m$) domain inverted structure and measured SHG properties of fabricated periodically poled MgO : $LiNbO_3$ ridge-type waveguides.

Fabrication and Characterization of Hydrogen Getter Based on Palladium Oxide Doped Nanoporous SiO2/Si Substrate (PdOx가 도핑된 나노 기공구조 SiO2/Si 기반의 수소 게터 제작 및 특성평가)

  • Eom, Nu Si A;Lim, Hyo Ryoung;Choi, Yo-Min;Jeong, Young-Hun;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.573-577
    • /
    • 2014
  • The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb $H_2$ gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the $SiO_2/Si$ was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.

Study On Effect of Fe Density on Electrolyte Exfoliation of Chromium Plating Layer (전해액의 Fe 농도에 의한 크롬도금 탈락 연구)

  • Park, Jin-Saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1297-1303
    • /
    • 2015
  • The internal chromium plating of a long-axis tube is widely used in military and industrial application, with the thick hard plating formed using a mixed solution of Chromium acid and catalytic $H_2SO_4$. A large-caliber gun can endure a high explosive force as a result of the increased stiffness and wear resistance provided by this internal hard chromium surface. The internal chromium layer of a tube is prone to exfoliation caused by the high kinetic energy of the projectile and high pressure of the explosion. Therefore, we reviewed the plating process. Chromium plating comprises many steps, including the removal of Grease, water cleaning, electrolytic abrasion, etching, plating, water cleaning, and hydrogen brittleness removal. The exfoliated chromium plating layer is affected by the adhesion property of the plating. In particular, the Fe concentration of the electrolyte affects the adhesion property. The optimum Fe concentration for effectively suppressing the exfoliation of the plating layer was established by using a scanning electron microscope to determine the surface roughness, and the effectiveness was proved in an adhesion test, etc.