• Title/Summary/Keyword: etching solution

Search Result 532, Processing Time 0.032 seconds

Regeneration of Waste Ferric Chloride Etchant Using HCl and $H_2O_2$ (HCl과 $H_2O_2$를 이용한 폐 $FeCl_3$ 에칭액의 재생)

  • Lee, Hoyeon;Ahn, Eunsaem;Park, Changhyun;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • $FeCl_3$ has been used as an etchant for metal etching such as Fe, Cu, and Al. In the process of metal etching, $Fe^{3+}$ is reducted to $Fe^{2+}$ and the etching rate becomes slow and etching efficiency decreased. Waste $FeCl_3$ etchant needs to be regenerated because of its toxicity and treatment cost. In this work, HCl was initially mixed with the waste $FeCl_3$ and then, strong oxidants, such as $O_2$ and $H_2O_2$, were added into the mixed solution to regenerate the waste etchant. During successive etching and regeneration processes, oxygen-reduction potential (ORP) was continuously measured and the relationship between ORP and etching capability was investigated. Regenerated etchant using a two vol% HCl of the total etchant volume and a very small amount of $H_2O_2$ was very effective in recovering etching capability. During the etching-regeneration process, the same oxygen-reduction potential variation cannot be repeated every cycle since concentrations of $Fe^{2+}$ and $Fe^{3+}$ ions were continuously changed. It suggested that the control of etching-regeneration process based on the etching time becomes more efficient than that of the process based on oxygen reduction potential changes.

Photoluminescence Tuning of Porous Silicon by Electrochemical Etching in Mixed Electrolytes

  • Lee, Ki-Hwan;Jeon, Ki-Seok;Lee, Seung-Koo;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • We have systematically studied the evolution of the photoluminescence(PL) tuning of porous silicon(PS) by electrochemical etching in various mixed electrolytes. The electrolytes employed as an etchants were mixtures of HF:CH$_3$COOH:HNO$_3$:C$_2$H$\_$5/OH solutions where the composition ratios (%) were varied from 10:1.98:0:88.02 to 10: 1.98:8.4:79.62 under constant concentration of HF and CH$_3$COOH with a total volume of 100 ml. Changes in the surface morphology of the samples caused by variations in the etching process were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). After samples are etched in various mixed electrolytes, FTIR analyses show that there is the non-photoluminescent state and the photoluminescent state simultaneously. The PL spectra show the PL tuning in the ranging from 560 to 700 nm with the increase of HNO$_3$ concentration. An analysis of the subsequent PL relaxation mechanism was carried out by time-correlated single photon counting (TCSPC) method. Based on experimental results, it is assumed that a red shift of the main PL peak position is related to the HNO$_3$ activated formation of silicon oxygen compounds. Therefore, the use of electrolyte mixtures with composition ratios can be obtained adequate and reproducible results for PL tuning.

  • PDF

Effects of Chemical and Abrasive Particles for the Removal Rate and Surface Microroughness in Ruthenium CMP (Ru CMP 공정에서의 화학액과 연마 입자 농도에 따른 연마율과 표면 특성)

  • Lee, Sang-Ho;Kang, Young-Jea;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1296-1299
    • /
    • 2004
  • MIM capacitor has been investigated for the next generation DRAM. Conventional poly-Si bottom electrode cannot satisfy the requirement of electrical properties and comparability to the high k materials. New bottom electrode material such as ruthenium has been suggested in the fabrication of MIM structure capacitor. However, the ruthenium has to be planarized due to the backend scalability. For the planarization CMP has been widely used in the manufacture of integrated circuit. In this research, ruthenium thin film was Polished by CMP with cerium ammonium nitrate (CAN)base slurry. HNO3 was added on the CAN solution as an additive. In the various concentration of chemical and alumina abrasive, ruthenium surface was etched and polished. After static etching and polishing, etching and removal rate was investigated. Also microroughness of surface was observed by AFM. The etching and removal rate depended on the concentration of CAN, and HNO3 accelerated the etching and polishing of ruthenium. The reasonable removal rate and microroughness of surface was achieved in the 1wt% alumina slurry.

  • PDF

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.

Characteristics of Alpha Particle Track on Cellulose Nitrate Film (Cellulose Nitrate의 알파입자비적특성(粒子飛跡特性))

  • Do, Jin-Yeol;Jun, Jae-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 1984
  • A study on the characteristics of ${\alpha}$-particle track on cellulose nitrate film was carried out with a particular emphasis on the dependence of track diameter upon chemical etching condition. The track diameters etched in KOH solution appeared to be, on average, three times larger than those etched in NaOH under the same etching condition. The relationship between the track diameters and both etching time and the energy of incident ${\alpha}$-particles was also investigated. It is shown that the particle fluence rate is fairly independent of etching time as far as the condition of irradiation remains unchanged.

  • PDF

Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup (집적형 광 픽업용 대면적 실리콘 미러 제작)

  • Kim, Hae-Sung;Lee, Myung-Bok;Sohn, Jin-Seung;Suh, Sung-Dong;Cho, Eun-Hyoung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF

Sulfuric Acid Treatment of Sapphire Substrates for Growth of High-Quality Epilayers

  • Park, Ji-Won;No, Young-Soo;Jung, Yeon-Sik;Yoon, Seok-Jin;Kim, Tae-Whan;Park, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.493-496
    • /
    • 2004
  • The chemical etching of sapphire substrates was peformed to produce smooth surfaces on an atomic scale. The sapphire sur-face etched by using a $H_2$S $O_4$ solution showed a pit-free morphology and was yen smooth as much as $\sigma$$_{rms}$=0.13 nm, that etched by using a mixture of $H_2$S $O_4$ and $H_3$P $O_4$ contained large pits with $\sigma$$_{rms}$=0.34 nm. The $\sigma$$_{rms}$’s and the number of the pits increased with increasing etching temperature. The sapphire etched by using $H_2$S $O_4$ at 32$0^{\circ}C$ had the best surface. These results provide important information on the effects of etching treatment on the structural properties of sapphire for the growth of high-quality epilayers.ayers.

Characterization of chemical vapor deposition-grown graphene films with various etchants

  • Choi, Hong-Kyw;Kim, Jong-Yun;Jeong, Hu-Young;Choi, Choon-Gi;Choi, Sung-Yool
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • We analyzed the effect of etchants for metal catalysts in terms of the characteristics of resulting graphene films, such as sheet resistance, hall mobility, transmittance, and carrier concentration. We found the residue of $FeCl_3$ etchant degraded the sheet resistance and mobility of graphene films. The residue was identified as an iron oxide containing a small amount of Cl through elemental analysis using X-ray photoelectron spectroscopy. To remove this residue, we provide an alternative etching solution by introducing acidic etching solutions and their combinations ($HNO_3$, HCl, $FeCl_3$ + HCl, and $FeCl_3+HNO_3$). The combination of $FeCl_3$ and acidic solutions (HCl and $HNO_3$) resulted in more enhanced electrical properties than pure etchants, which is attributed to the elimination of left over etching residue, and a small amount of amorphous carbon debris after the etching process.

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.