• Title/Summary/Keyword: etching damage

Search Result 176, Processing Time 0.025 seconds

The Surface Damage of SBT Thin Film Etched in $Ar/CF_{4}/Cl_{2}$ Plasma ($Ar/CF_{4}/Cl_{2}$ 유도결합 플라즈마에 의한 SBT 박막의 표면 손상)

  • Kim, Dong-Pyo;Kim, Chang-Il;Lee, Cheol-In;Kim, Tae-Hyung;Lee, Won-Jae;Yu, Byung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.26-29
    • /
    • 2001
  • $SrBi_2Ta_2O_{9}$ thin films were etched at high-density $Cl_2/CF_4/Ar$ in inductively coupled plasma system. The etching of SBT thin films in $Cl_2/CF_4/Ar$ were chemically assisted reactive ion etching. The maximum etch rate was 1300 $\AA$/min at 900W in $Cl_2(20)/CF_4(20)/Ar(80)$. As rf power increase, radicals (F, Cl) and ion(Ar) increase. The influence of plasma induced damage during etching process was investigated in terms of the surface morphology and th phase of X-ray diffraction. The chemical residue was investigated with secondary ion mass sperometry.

  • PDF

The Surface Damage of SBT Thin Film Etched in $Ar/CF_{4}/Cl_{2}$ Plasma ($Ar/CF_{4}/Cl_{2}$ 유도결합 플라즈마에 의한 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.26-29
    • /
    • 2001
  • SrBi$_2$Ta$_2$$O_{9}$ thin films were etched at high-density C1$_2$/CF$_{4}$/Ar in inductively coupled plasma system. The etching of SBT thin films in C1$_2$/CF$_{4}$/Ar were chemically assisted reactive ion etching. The maximum etch rate was 1300 $\AA$/min at 900W in Cl$_2$(20)/CF$_4$(20)/Ar(80). As f power increase, radicals (F, Cl) and ion(Ar) increase. The influence of plasma induced damage during etching process was investigated in terms of the surface morphology and th phase of X-ray diffraction. The chemical residue was investigated with secondary ion mass spectrometry.y.

  • PDF

Silicon Solar Cell Efficiency Improvement with surface Damage Removal Etching and Anti-reflection Coating Process (표면결함식각 및 반사방지막 열처리에 따른 태양전지의 효율 개선)

  • Cho, Chan Seob;Oh, Jeong Hwa;Lee, Byeungleul;Kim, Bong Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.29-35
    • /
    • 2014
  • In this study general solar cell production process was complemented, with research on improvement of solar cell efficiency through surface structure and thermal annealing process. Firstly, to form the pyramid structure, the saw damage removal (SDR) processed surface was undergone texturing process with reactive ion etching (RIE). Then, for the formation of smooth pyramid structure to facilitate uniform doping and electrode formation, the surface was etched with HND(HF : HNO3 : D.I. water=5 : 100 : 100) solution. Notably, due to uniform doping the leakage current decreased greatly. Also, for the enhancement and maintenance of minority carrier lifetime, antireflection coating thermal annealing was done. To maintain this increased lifetime, front electrode was formed through Au plating process without high temperature firing process. Through these changes in two processes, the leakage current effect could be decreased and furthermore, the conversion efficiency could be increased. Therefore, compared to the general solar cell with a conversion efficiency of 15.89%, production of high efficiency solar cell with a conversion efficiency of 17.24% was made possible.

An Investigation of Selective Etching of GaAs to Al\ulcornerGa\ulcornerAs Using BCI$_3$SF\ulcorner Gas Mixture in ECR Plasma (ECR 플라즈마에서 $BCI_3/SF_6$ 혼합 가스를 이용한 $Al_{0.25}Ga_{0.75}As$에 대한 GaAs의 선택적 식각에 대한 연구)

  • 이철욱;이동율;손정식;배인호;박성배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.447-452
    • /
    • 1998
  • The selective dry etching of GaAs to Al\ulcornerGa\ulcornerAs using $BCI_3/SF_6$ gas mixture in electron cyclotron resonance(ECR) plasma is investigated. A selectivity of GaAs to AlGaAs of more than 100 and maximum etch rate of GaAs are obtained at a gas ratio $SF_6/BCI_3+SF_6$ of 25%. We verified the formation of $AlF_3$ on $Al_{0.25}Ga_{0.75}As$from the Auger spectra which enhanced the etch selectivity. In order to investigate surface damage of AlGaAs caused by ECR plasma, we performed a low temperature photoluminescence(PL) measurement as a function of RF power. As the RF power. As the RF power increases, the PL intensity decreases monotonically from 50 to 100 Wand then repidly decreases until 250 W. This behavior is due to surface damage by plasma treatment. This dry etching technique using $BCI_3/SF_6$ gas mixture in ECR plasma is suitable for gate recess formation on the GaAs based pseudomorphic high electron mobility transistor(PHEMT)

  • PDF

Investigation of Improving Texturing Effect by Surface Saw Damage Etching Using Acidic Etchant for Silicon Solar Cells (산성 표면절삭결함 제거 공정에 의한 실리콘 태양전지의 텍스쳐링 효과 개선)

  • Park, Hayoung;Lee, Joon Sung;Kwon, Soonwoo;Yoon, Sewang;Lim, Heejin;Kim, Donghwan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.835-840
    • /
    • 2008
  • Texturing for crystalline silicon solar cells is one of the important techniques to increase conversion efficiency by effective photon trapping. Generally, incoming wafers or alkali etched wafers are used for texturing. From this conventional etching process, $7{\sim}10{\mu}m$-sized random pyramids are formed. In this study, acid etching for removal of saw damages was practiced before texturing. This improved the resulting surface morphology, which consisted of $2{\sim}4{\mu}m$-sized pyramids. Because these pyramids covered the surface much more extensively, we obtained reduction of optical losses on the surface. In order to compare with conventional texturing, FE-SEM is used for observing surface morphology and reflectance data is analyzed by UV-VIS spectrophotometer.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

The Saw Damage Etching Characteristics of Silicon Wafer for Solar Cell with Alkaline Solutions (염기용액을 이용한 태양전지용 실리콘 기판의 절삭손상층 식각 특성)

  • Kwon, Soon-Woo;Yi, Jong-Heop;Yoon, Se-Wang;Kim, Dong-Hwan
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The surface etching characteristics of single crystalline silicon wafer were investigated using potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). The saw damage layer was removed after 10min by KOH 45wt% solution at $80^{\circ}C$. The wafer etched at high temperature ($90^{\circ}C$) and in low concentration (4wt%) of TMAH solution showed an increased etch rate of silicon wafer and wavy patterns on the surface. Especially, pyramidal textures were formed in 4wt% TMAH solution without alcohol additives.

  • PDF

A Comparative Study on the Influence of Etchant upon the Etching Rate and Quality in Laser Induced Wet Etching of Fused Silica (식각액에 따른 용융실리카의 레이저 습식 식각 특성 비교 연구)

  • 이종호;이종길;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.268-272
    • /
    • 2004
  • Transparent materials such as fused silica are widely utilized in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. In this study, we made a few micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone solution and toluene were used as etchant. In the side of etch rate, toluene solution was better than pyrene-acetone solution. But we made in wider range of energy density using pyrene-acetone solution. But pyrene-acetone solution gave us wider window of energy density for successful micro patterning.

High Speed Etching for Saw Damage Removal Using by RF DBD

  • Go, Min-Guk;Yang, Jong-Geun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.139.2-139.2
    • /
    • 2013
  • 6" Multi-crystal Silicon wafer has etched suing a remote - type RF Dielectric barrier discharge (RF DBD) at atmospheric pressure. DBD source is composed of Al electrode and coated Al2O3 dielectric as function of Ar/NF3 gas combination and input power used 13.56 MHz power supply. Ar gas flow rate is changed from 2 to 10 Slm, and NF3 flow rate is changed from 0.2~1 slm. At the result, NF3 flow rate Si etching rate also increase whit the increasing of NF3 flow rate But at 2 slm etching rate was decrease. In this experience, Max etching rate is 2.3 ${\mu}m/min$ when the scan time is 45 sec.

  • PDF